Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Introduction to Functional Equations

Introduction to Functional Equations Author Costas Efthimiou
ISBN-10 9780821853146
Release 2011-10-13
Pages 363
Download Link Click Here

Functions and their properties have been part of the rigorous precollege curriculum for decades. And functional equations have been a favorite topic of the leading national and international mathematical competitions. Yet the subject has not received equal attention by authors at an introductory level. The majority of the books on the topic remain unreachable to the curious and intelligent precollege student. The present book is an attempt to eliminate this disparity. The book opens with a review chapter on functions, which collects the relevant foundational information on functions, plus some material potentially new to the reader. The next chapter presents a working definition of functional equations and explains the difficulties in trying to systematize the theory. With each new chapter, the author presents methods for the solution of a particular group of equations. Each chapter is complemented with many solved examples, the majority of which are taken from mathematical competitions and professional journals. The book ends with a chapter of unsolved problems and some other auxiliary material. The book is an invaluable resource for precollege and college students who want to deepen their knowledge of functions and their properties, for teachers and instructors who wish to enrich their curricula, and for any lover of mathematical problem-solving techniques. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.



Introduction to Functional Equations

Introduction to Functional Equations Author Prasanna K. Sahoo
ISBN-10 9781439841167
Release 2011-02-08
Pages 465
Download Link Click Here

Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values. In order to make the presentation as manageable as possible for students from a variety of disciplines, the book chooses not to focus on functional equations where the unknown functions take on values on algebraic structures such as groups, rings, or fields. However, each chapter includes sections highlighting various developments of the main equations treated in that chapter. For advanced students, the book introduces functional equations in abstract domains like semigroups, groups, and Banach spaces. Functional equations covered include: Cauchy Functional Equations and Applications The Jensen Functional Equation Pexider's Functional Equation Quadratic Functional Equation D'Alembert Functional Equation Trigonometric Functional Equations Pompeiu Functional Equation Hosszu Functional Equation Davison Functional Equation Abel Functional Equation Mean Value Type Functional Equations Functional Equations for Distance Measures The innovation of solving functional equations lies in finding the right tricks for a particular equation. Accessible and rooted in current theory, methods, and research, this book sharpens mathematical competency and prepares students of mathematics and engineering for further work in advanced functional equations.



An Introduction to the Theory of Functional Equations and Inequalities

An Introduction to the Theory of Functional Equations and Inequalities Author Marek Kuczma
ISBN-10 9783764387495
Release 2009-03-12
Pages 595
Download Link Click Here

Marek Kuczma was born in 1935 in Katowice, Poland, and died there in 1991. After finishing high school in his home town, he studied at the Jagiellonian University in Kraków. He defended his doctoral dissertation under the supervision of Stanislaw Golab. In the year of his habilitation, in 1963, he obtained a position at the Katowice branch of the Jagiellonian University (now University of Silesia, Katowice), and worked there till his death. Besides his several administrative positions and his outstanding teaching activity, he accomplished excellent and rich scientific work publishing three monographs and 180 scientific papers. He is considered to be the founder of the celebrated Polish school of functional equations and inequalities. "The second half of the title of this book describes its contents adequately. Probably even the most devoted specialist would not have thought that about 300 pages can be written just about the Cauchy equation (and on some closely related equations and inequalities). And the book is by no means chatty, and does not even claim completeness. Part I lists the required preliminary knowledge in set and measure theory, topology and algebra. Part II gives details on solutions of the Cauchy equation and of the Jensen inequality [...], in particular on continuous convex functions, Hamel bases, on inequalities following from the Jensen inequality [...]. Part III deals with related equations and inequalities (in particular, Pexider, Hosszú, and conditional equations, derivations, convex functions of higher order, subadditive functions and stability theorems). It concludes with an excursion into the field of extensions of homomorphisms in general." (Janos Aczel, Mathematical Reviews) "This book is a real holiday for all the mathematicians independently of their strict speciality. One can imagine what deliciousness represents this book for functional equationists." (B. Crstici, Zentralblatt für Mathematik)



Functional Equations on Groups

Functional Equations on Groups Author Henrik Stetkær
ISBN-10 9789814513142
Release 2013-07-15
Pages 396
Download Link Click Here

This volume provides an accessible and coherent introduction to some of the scientific progress on functional equations on groups in the last two decades. It presents the latest methods of treating the topic and contains new and transparent proofs. Its scope extends from the classical functional equations on the real line to those on groups, in particular, non-abelian groups. This volume presents, in careful detail, a number of illustrative examples like the cosine equation on the Heisenberg group and on the group SL(2, ℝ). Some of the examples are not even seen in existing monographs. Thus, it is an essential source of reference for further investigations. Contents:IntroductionAround the Additive Cauchy EquationThe Multiplicative Cauchy EquationAddition and Subtraction FormulasLevi–Civita's Functional EquationThe Symmetrized Sine Addition FormulaEquations with Symmetric Right Hand SideThe Pre-d'Alembert Functional EquationD'Alembert's Functional EquationD'Alembert's Long Functional EquationWilson's Functional EquationJensen's Functional EquationThe Quadratic Functional EquationK-Spherical FunctionsThe Sine Functional EquationThe Cocycle EquationAppendices:Basic Terminology and ResultsSubstitutes for CommutativityThe Casorati DeterminantRegularityMatrix-Coefficients of RepresentationsThe Small Dimension LemmaGroup Cohomology Readership: Advanced undergraduates, graduates and professional mathematicians interested in harmonic analysis and/or functional equations. Keywords:Functional Equation;Group;Harmonic AnalysisKey Features:Most of the material of the book can be found only in research papers, so it is a good source of referenceThe book is self-contained and provides the necessary background material needed to go further into the subject and to explore the research literatureThe book may be used as a textbook for graduate students and even ambitious undergraduate in mathematics, because it presents the material in an accessible way, originating from a course for students at master's levelExercises at the end of each chapter, some with answers, help to provide more examples to enable the student to grasp the topic betterReviews: “It is an excellent, well composed and self-contained monograph, written in good and clear English. It can serve as a complete and independent introduction to the field of trigonometric functional equations and as an excellent source of suitable references for further study. The scope of solutions considered extends from real functions to those acting between groups, also non-abelian.” Prof Janusz Brzdęk Pedagogical University Kraków, Poland “The book is written as an accessible introduction to trigonometric functional equations for graduate students and working mathematicians. It gives a very readable account of recent research in the area, as well as more than 200 references for further study. It would make an excellent textbook for a graduate course on the topic. This monograph is a valuable contribution to the literature on functional equations.” Zentralblatt MATH



Examples of the Solutions of Functional Equations

Examples of the Solutions of Functional Equations Author Charles Babbage
ISBN-10 9781107616004
Release 2013-06-13
Pages 48
Download Link Click Here

Originally published in 1820, this is an early work by the renowned mathematician and inventor Charles Babbage (1791-1871). The text was written to provide mathematical students with an accessible introduction to functional equations, an area that had been previously absent from elementary mathematical literature. A short bibliography is also contained. This book will be of value to anyone with an interest in Babbage and the history of mathematics.



Functional Equations

Functional Equations Author David Leigh-Lancaster
ISBN-10 9780864314925
Release 2005-11-17
Pages 114
Download Link Click Here

Functional equations provides mathematics teachers with an introduction to elementary aspects of functional equations. These equations are linked to function in various topics of the senior secondary mathematics curriculum including transformations, identities difference equations and mathematical modelling.



Stability of Functional Equations in Several Variables

Stability of Functional Equations in Several Variables Author D.H. Hyers
ISBN-10 9781461217909
Release 2012-12-06
Pages 318
Download Link Click Here

The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.



Stability of Functional Equations in Banach Algebras

Stability of Functional Equations in Banach Algebras Author Yeol Je Cho
ISBN-10 9783319187082
Release 2015-06-26
Pages 343
Download Link Click Here

Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the latest results in mathematical analysis. Moreover, research mathematicians, physicists and engineers will benefit from the variety of old and new results, as well as theories and methods presented in this book.



Functional equations in a single variable

Functional equations in a single variable Author Marek Kuczma
ISBN-10 WISC:89041213521
Release 1968
Pages 383
Download Link Click Here

Functional equations in a single variable has been writing in one form or another for most of life. You can find so many inspiration from Functional equations in a single variable also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Functional equations in a single variable book for free.



Basic sets for functional equations

Basic sets for functional equations Author Maciej Sablik
ISBN-10 UOM:39015042990377
Release 1996
Pages 72
Download Link Click Here

Basic sets for functional equations has been writing in one form or another for most of life. You can find so many inspiration from Basic sets for functional equations also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Basic sets for functional equations book for free.



Introduction to Functional Differential Equations

Introduction to Functional Differential Equations Author Jack K. Hale
ISBN-10 9781461243427
Release 2013-11-21
Pages 450
Download Link Click Here

The present book builds upon an earlier work of J. Hale, "Theory of Func tional Differential Equations" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( ¢,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constants formula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . .



Regularity Properties of Functional Equations in Several Variables

Regularity Properties of Functional Equations in Several Variables Author Antal Járai
ISBN-10 9780387244143
Release 2006-03-30
Pages 363
Download Link Click Here

This book illustrates the basic ideas of regularity properties of functional equations by simple examples. It then treats most of the modern results about regularity of non-composite functional equations of several variables in a unified fashion. A long introduction highlights the basic ideas for beginners and several applications are also included.



Volterra Integral and Functional Equations

Volterra Integral and Functional Equations Author G. Gripenberg
ISBN-10 0521372895
Release 1990
Pages 701
Download Link Click Here

This book looks at the theories of Volterra integral and functional equations.



Integrable Solutions of Functional Equations

Integrable Solutions of Functional Equations Author Janusz Matkowski
ISBN-10 STANFORD:36105031693026
Release 1975
Pages 68
Download Link Click Here

Integrable Solutions of Functional Equations has been writing in one form or another for most of life. You can find so many inspiration from Integrable Solutions of Functional Equations also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Integrable Solutions of Functional Equations book for free.



Iterative Functional Equations

Iterative Functional Equations Author Marek Kuczma
ISBN-10 0521355613
Release 1990-07-27
Pages 552
Download Link Click Here

A cohesive and comprehensive account of the modern theory of iterative functional equations. Many of the results included have appeared before only in research literature, making this an essential volume for all those working in functional equations and in such areas as dynamical systems and chaos, to which the theory is closely related. The authors introduce the reader to the theory and then explore the most recent developments and general results. Fundamental notions such as the existence and uniqueness of solutions to the equations are stressed throughout, as are applications of the theory to such areas as branching processes, differential equations, ergodic theory, functional analysis and geometry. Other topics covered include systems of linear and nonlinear equations of finite and infinite ORD various function classes, conjugate and commutable functions, linearization, iterative roots of functions, and special functional equations.



Functional Equations in Applied Sciences

Functional Equations in Applied Sciences Author Enrique Castillo
ISBN-10 0080477917
Release 2004-11-04
Pages 408
Download Link Click Here

The book provides the reader with the different types of functional equations that s/he can find in practice, showing, step by step, how they can be solved. A general methodology for solving functional equations is provided in Chapter 2. The different types of functional equations are described and solved in Chapters 3 to 8. Many examples, coming from different fields, as geometry, science, engineering, economics, probability, statistics, etc, help the reader to change his/her mind in order to state problems as functional equations as an alternative to differential equations, and to state new problems in terms of functional equations or systems. An interesting feature of the book is that it deals with functional networks, a powerful generalization of neural networks that allows solving many practical problems. The second part of the book, Chapters 9 to 13, is devoted to the applications of this important paradigm. The book contains many examples and end of chapter exercises, that facilitates the understanding of the concepts and applications. · A general methodology for solving functional equations is provided in Chapter 2. · It deals with functional networks, a powerful generalization of neural networks. · Many examples, coming from different fields, as geometry, science, engineering, economics, probability, statistics, etc, illustrate the concept of functional equation. · Functional equations are presented as a powerful alternative to differential equations. · The book contains end of chapter exercises.



Introduction to the Theory and Applications of Functional Differential Equations

Introduction to the Theory and Applications of Functional Differential Equations Author V. Kolmanovskii
ISBN-10 9789401719650
Release 2013-04-18
Pages 648
Download Link Click Here

Introduction to the Theory and Applications of Functional Differential Equations has been writing in one form or another for most of life. You can find so many inspiration from Introduction to the Theory and Applications of Functional Differential Equations also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Introduction to the Theory and Applications of Functional Differential Equations book for free.