Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

 Continuing to emphasize numerical and graphical methods, An Introduction to Generalized Linear Models, Third Edition provides a cohesive framework for statistical modeling. This new edition of a bestseller has been updated with Stata, R, and WinBUGS code as well as three new chapters on Bayesian analysis. Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers normal, Poisson, and binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods. Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons. It includes examples and exercises with complete data sets for nearly all the models covered.

 Bridging the gap between theory and practice for modern statistical model building, Introduction to General and Generalized Linear Models presents likelihood-based techniques for statistical modelling using various types of data. Implementations using R are provided throughout the text, although other software packages are also discussed. Numerous examples show how the problems are solved with R. After describing the necessary likelihood theory, the book covers both general and generalized linear models using the same likelihood-based methods. It presents the corresponding/parallel results for the general linear models first, since they are easier to understand and often more well known. The authors then explore random effects and mixed effects in a Gaussian context. They also introduce non-Gaussian hierarchical models that are members of the exponential family of distributions. Each chapter contains examples and guidelines for solving the problems via R. Providing a flexible framework for data analysis and model building, this text focuses on the statistical methods and models that can help predict the expected value of an outcome, dependent, or response variable. It offers a sound introduction to general and generalized linear models using the popular and powerful likelihood techniques. Ancillary materials are available at www.imm.dtu.dk/~hm/GLM

 Generalized linear models provide a unified theoretical and conceptual framework for many of the most commonly used statistical methods. In the ten years since publication of the first edition of this bestselling text, great strides have been made in the development of new methods and in software for generalized linear models and other closely related models. Thoroughly revised and updated, An Introduction to Generalized Linear Models, Second Edition continues to initiate intermediate students of statistics, and the many other disciplines that use statistics, in the practical use of these models and methods. The new edition incorporates many of the important developments of the last decade, including survival analysis, nominal and ordinal logistic regression, generalized estimating equations, and multi-level models. It also includes modern methods for checking model adequacy and examples from an even wider range of application. Statistics can appear to the uninitiated as a collection of unrelated tools. An Introduction to Generalized Linear Models, Second Edition illustrates how these apparently disparate methods are examples or special cases of a conceptually simple structure based on the exponential family of distribution, maximum likelihood estimation, and the principles of statistical modelling.

 Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author's treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the data described in the book is available at http://people.bath.ac.uk/jjf23/ELM/ Statisticians need to be familiar with a broad range of ideas and techniques. This book provides a well-stocked toolbox of methodologies, and with its unique presentation of these very modern statistical techniques, holds the potential to break new ground in the way graduate-level courses in this area are taught.

 The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. Simon N. Wood is a professor of Statistical Science at the University of Bristol, UK, and author of the R package mgcv.

 Generalized Linear Mixed Models: Modern Concepts, Methods and Applications presents an introduction to linear modeling using the generalized linear mixed model (GLMM) as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider. Along with describing common applications of GLMMs, the text introduces the essential theory and main methodology associated with linear models that accommodate random model effects and non-Gaussian data. Unlike traditional linear model textbooks that focus on normally distributed data, this one adopts a generalized mixed model approach throughout: data for linear modeling need not be normally distributed and effects may be fixed or random. With numerous examples using SAS® PROC GLIMMIX, this book is ideal for graduate students in statistics, statistics professionals seeking to update their knowledge, and researchers new to the generalized linear model thought process. It focuses on data-driven processes and provides context for extending traditional linear model thinking to generalized linear mixed modeling. See Professor Stroup discuss the book.

 A First Step toward a Unified Theory of Richly Parameterized Linear Models Using mixed linear models to analyze data often leads to results that are mysterious, inconvenient, or wrong. Further compounding the problem, statisticians lack a cohesive resource to acquire a systematic, theory-based understanding of models with random effects. Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects takes a first step in developing a full theory of richly parameterized models, which would allow statisticians to better understand their analysis results. The author examines what is known and unknown about mixed linear models and identifies research opportunities. The first two parts of the book cover an existing syntax for unifying models with random effects. The text explains how richly parameterized models can be expressed as mixed linear models and analyzed using conventional and Bayesian methods. In the last two parts, the author discusses oddities that can arise when analyzing data using these models. He presents ways to detect problems and, when possible, shows how to mitigate or avoid them. The book adapts ideas from linear model theory and then goes beyond that theory by examining the information in the data about the mixed linear model’s covariance matrices. Each chapter ends with two sets of exercises. Conventional problems encourage readers to practice with the algebraic methods and open questions motivate readers to research further. Supporting materials, including datasets for most of the examples analyzed, are available on the author’s website.

 This innovative, intermediate-level statistics text fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the author's introduces students to the mathematical and statistical concepts and tools that form a foundation for studying the theory and applications of both univariate and multivariate linear models A First Course in Linear Model Theory systematically presents the basic theory behind linear statistical models with motivation from an algebraic as well as a geometric perspective. Through the concepts and tools of matrix and linear algebra and distribution theory, it provides a framework for understanding classical and contemporary linear model theory. It does not merely introduce formulas, but develops in students the art of statistical thinking and inspires learning at an intuitive level by emphasizing conceptual understanding. The authors' fresh approach, methodical presentation, wealth of examples, and introduction to topics beyond the classical theory set this book apart from other texts on linear models. It forms a refreshing and invaluable first step in students' study of advanced linear models, generalized linear models, nonlinear models, and dynamic models.

 Based on the authors’ lecture notes, Introduction to the Theory of Statistical Inference presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Suitable for a second-semester undergraduate course on statistical inference, the book offers proofs to support the mathematics. It illustrates core concepts using cartoons and provides solutions to all examples and problems. Highlights Basic notations and ideas of statistical inference are explained in a mathematically rigorous, but understandable, form Classroom-tested and designed for students of mathematical statistics Examples, applications of the general theory to special cases, exercises, and figures provide a deeper insight into the material Solutions provided for problems formulated at the end of each chapter Combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models Theoretical, difficult, or frequently misunderstood problems are marked The book is aimed at advanced undergraduate students, graduate students in mathematics and statistics, and theoretically-interested students from other disciplines. Results are presented as theorems and corollaries. All theorems are proven and important statements are formulated as guidelines in prose. With its multipronged and student-tested approach, this book is an excellent introduction to the theory of statistical inference.

 Part 1: Introduction Chapter 1: What is Natural Resources Research? Chapter 2: At Least Read This. Chapter 3: Sidetracks Part 2: Planning Chapter 4: Introduction to Research Planning Chapter 5: Concepts Underlying Experiments Chapter 6: Sampling Concepts Chapter 7: Surveys and Studies of Human Subjects Chapter 8: Surveying Land and Natural Populations Chapter 9: Planning Effective Experiments Part 3: Data Management Chapter 10: Data Management Issues and Problems Chapter 11: Use of Spreadsheet Packages Chapter 12: The Role of a Database Package Chapter 13: Developing a Data Management Strategy Chapter 14: Use of Statistical Software Part 4: Analysis Chapter 15: Analysis - Aims and Approaches Chapter 16: The DIY Toolbox - General Ideas 16.1 Opening the Toolbox 221 Chapter 17: Analysis of Survey Data Chapter 18: Analysis of Experimental Data Chapter 19: General Linear Models Chapter 20: The Craftsman's Toolbox Chapter 21: Informative Presentation of Tables, Graphs and Statistics Part 5: Where Next? Chapter 22: Current Trends and their Implications for Good Practice Chapter 23: Resources and Further Reading.

 Designed for a graduate course in applied statistics, Nonparametric Methods in Statistics with SAS Applications teaches students how to apply nonparametric techniques to statistical data. It starts with the tests of hypotheses and moves on to regression modeling, time-to-event analysis, density estimation, and resampling methods. The text begins with classical nonparametric hypotheses testing, including the sign, Wilcoxon sign-rank and rank-sum, Ansari-Bradley, Kolmogorov-Smirnov, Friedman rank, Kruskal-Wallis H, Spearman rank correlation coefficient, and Fisher exact tests. It then discusses smoothing techniques (loess and thin-plate splines) for classical nonparametric regression as well as binary logistic and Poisson models. The author also describes time-to-event nonparametric estimation methods, such as the Kaplan-Meier survival curve and Cox proportional hazards model, and presents histogram and kernel density estimation methods. The book concludes with the basics of jackknife and bootstrap interval estimation. Drawing on data sets from the author’s many consulting projects, this classroom-tested book includes various examples from psychology, education, clinical trials, and other areas. It also presents a set of exercises at the end of each chapter. All examples and exercises require the use of SAS 9.3 software. Complete SAS codes for all examples are given in the text. Large data sets for the exercises are available on the author’s website.

 Books on regression and the analysis of variance abound—many are introductory, many are theoretical. While most of them do serve a purpose, the fact remains that data analysis cannot be properly learned without actually doing it, and this means using a statistical software package. There are many of these to choose from, all with their particular strengths and weaknesses. Lately, however, one such package has begun to rise above the others thanks to its free availability, its versatility as a programming language, and its interactivity. That software is R. In the first book that directly uses R to teach data analysis, Linear Models with R focuses on the practice of regression and analysis of variance. It clearly demonstrates the different methods available and, more importantly, in which situations each one applies. It covers all of the standard topics, from the basics of estimation to missing data, factorial designs, and block designs. It also discusses topics, such as model uncertainty, rarely addressed in books of this type. The presentation incorporates numerous examples that clarify both the use of each technique and the conclusions one can draw from the results. All of the data sets used in the book are available for download from http://people.bath.ac.uk/jjf23/LMR/ The author assumes that readers know the essentials of statistical inference and have a basic knowledge of data analysis, linear algebra, and calculus. The treatment reflects his view of statistical theory and his belief that qualitative statistical concepts, while somewhat more difficult to learn, are just as important because they enable us to practice statistics rather than just talk about it.

 Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

 Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression: * A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods. * Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case. * In view of the voluminous nature of many modern datasets, there is a chapter on Big Data. * Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems. * Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics. * More than 75 examples using real data. The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis. Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.