Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Introduction to Linear Regression Analysis

Introduction to Linear Regression Analysis Author Douglas C. Montgomery
ISBN-10 9781118627365
Release 2013-06-06
Pages 672
Download Link Click Here

Praise for the Fourth Edition "As with previous editions, the authors have produced a leading textbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to the fundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today’s cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences. Following a general introduction to regression modeling, including typical applications, a host of technical tools are outlined such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book then discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. The Fifth Edition features numerous newly added topics, including: A chapter on regression analysis of time series data that presents the Durbin-Watson test and other techniques for detecting autocorrelation as well as parameter estimation in time series regression models Regression models with random effects in addition to a discussion on subsampling and the importance of the mixed model Tests on individual regression coefficients and subsets of coefficients Examples of current uses of simple linear regression models and the use of multiple regression models for understanding patient satisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors have incorporated JMP and the freely available R software to illustrate the discussed techniques and procedures in this new edition. Numerous exercises have been added throughout, allowing readers to test their understanding of the material. Introduction to Linear Regression Analysis, Fifth Edition is an excellent book for statistics and engineering courses on regression at the upper-undergraduate and graduate levels. The book also serves as a valuable, robust resource for professionals in the fields of engineering, life and biological sciences, and the social sciences.



Solutions Manual to Accompany Introduction to Linear Regression Analysis

Solutions Manual to Accompany Introduction to Linear Regression Analysis Author Ann G. Ryan
ISBN-10 9781118548509
Release 2013-04-23
Pages 164
Download Link Click Here

As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition. Clearly balancing theory with applications, this book describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation.



Introduction to Linear Regression Analysis

Introduction to Linear Regression Analysis Author Douglas C. Montgomery
ISBN-10 0471754951
Release 2006-07-21
Pages 640
Download Link Click Here

A comprehensive and up-to-date introduction to the fundamentals of regression analysis The Fourth Edition of Introduction to Linear Regression Analysis describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. This popular book blends both theory and application to equip the reader with an understanding of the basic principles necessary to apply regression model-building techniques in a wide variety of application environments. It assumes a working knowledge of basic statistics and a familiarity with hypothesis testing and confidence intervals, as well as the normal, t, x2, and F distributions. Illustrating all of the major procedures employed by the contemporary software packages MINITAB(r), SAS(r), and S-PLUS(r), the Fourth Edition begins with a general introduction to regression modeling, including typical applications. A host of technical tools are outlined, such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. Subsequent chapters discuss: * Indicator variables and the connection between regression and analysis-of-variance models * Variable selection and model-building techniques and strategies * The multicollinearity problem--its sources, effects, diagnostics, and remedial measures * Robust regression techniques such as M-estimators, and properties of robust estimators * The basics of nonlinear regression * Generalized linear models * Using SAS(r) for regression problems This book is a robust resource that offers solid methodology for statistical practitioners and professionals in the fields of engineering, physical and chemical sciences, economics, management, life and biological sciences, and the social sciences. Both the accompanying FTP site, which contains data sets, extensive problem solutions, software hints, and PowerPoint(r) slides, as well as the book's revised presentation of topics in increasing order of complexity, facilitate its use in a classroom setting. With its new exercises and structure, this book is highly recommended for upper-undergraduate and beginning graduate students in mathematics, engineering, and natural sciences. Scientists and engineers will find the book to be an excellent choice for reference and self-study.



INTRODUCTION TO LINEAR REGRESSION ANALYSIS 3RD ED

INTRODUCTION TO LINEAR REGRESSION ANALYSIS  3RD ED Author Douglas C. Montgomery
ISBN-10 8126510471
Release 2006-01-01
Pages 672
Download Link Click Here

Market_Desc: · Practitioners in diverse fields, including engineers, who use regression analysis techniques Special Features: A revised and updated edition of a book with a solid reputation for its excellent treatment of the theory and applications of linear regression analysis, integrating standard topics with some of the newer and less conventional areas. The new edition features complete reorganization of the material since the previous edition was published in 1992, allowing for a more logical flow of bite-sized material while keeping the size of the book manageable. Modern topics added include classification and regression analysis (CART), neural networks, and the bootstrap, among others.· Expanded topics include robust regression, nonlinear regression, GLMs, and others· Problems and data sets have been extensively revised· Remains oriented toward the analyst who uses computers for problem solution· Authors have greatly expanded the discussion of regression diagnostics, illustrating all of the major procedures available in contemporary software packages· An accompanying Web site contains data sets, extensive problem solutions, and software hints About The Book: This book is intended as a text for a basic course in linear regression analysis. It contains the standard topics as well as some of the newer and more unconventional ones and blends both theory and application so that the reader will obtain and understanding of the basic principles necessary to apply regression methods in a variety of practical settings.



Introduction to Linear Regression Analysis Fifth Edition Set

Introduction to Linear Regression Analysis  Fifth Edition Set Author Douglas C. Montgomery
ISBN-10 1118780574
Release 2013-05-16
Pages 836
Download Link Click Here

This set includes Introduction to Linear Regression Analysis, 5th Edition & Solutions Manual to Accompany Introduction to Linear Regression Analysis, 5th Edition. Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today’s cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences.



Introduction to Linear Regression Analysis Student Solutions Manual

Introduction to Linear Regression Analysis  Student Solutions Manual Author Douglas C. Montgomery
ISBN-10 0471413763
Release 2001-09-24
Pages 140
Download Link Click Here

A comprehensive and thoroughly up-to-date look at regression analysis-still the most widely used technique in statistics today As basic to statistics as the Pythagorean theorem is to geometry, regression analysis is a statistical technique for investigating and modeling the relationship between variables. With far-reaching applications in almost every field, regression analysis is used in engineering, the physical and chemical sciences, economics, management, life and biological sciences, and the social sciences. Clearly balancing theory with applications, Introduction to Linear Regression Analysis describes conventional uses of the technique, as well as less common ones, placing linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. Succeeding chapters include detailed coverage of: * Indicator variables, making the connection between regression and analysis-of-variance modelss * Variable selection and model-building techniques * The multicollinearity problem, including its sources, harmful effects, diagnostics, and remedial measures * Robust regression techniques, including M-estimators, Least Median of Squares, and S-estimation * Generalized linear models The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation. Topics not usually found in a linear regression textbook, such as nonlinear regression and generalized linear models, yet critical to engineering students and professionals, have also been included. The new critical role of the computer in regression analysis is reflected in the book's expanded discussion of regression diagnostics, where major analytical procedures now available in contemporary software packages, such as SAS, Minitab, and S-Plus, are detailed. The Appendix now includes ample background material on the theory of linear models underlying regression analysis. Data sets from the book, extensive problem solutions, and software hints are available on the ftp site. For other Wiley books by Doug Montgomery, visit our website at www.wiley.com/college/montgomery.



Introduction to Linear Regression Analysis Fourth Edition Solutions Set

Introduction to Linear Regression Analysis  Fourth Edition Solutions Set Author Douglas C. Montgomery
ISBN-10 0470258306
Release 2007-08-31
Pages 612
Download Link Click Here

This set includes the text Introduction to Linear Regression Analysis, 4th Edition by Dougla C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining and the Introduction to Linear Regression Analysis, Student Solutions Manual , 4th Edition.



Introduction to Mixed Modelling

Introduction to Mixed Modelling Author N. W. Galwey
ISBN-10 9780470035962
Release 2007-04-04
Pages 376
Download Link Click Here

Mixed modelling is one of the most promising and exciting areas of statistical analysis, enabling more powerful interpretation of data through the recognition of random effects. However, many perceive mixed modelling as an intimidating and specialized technique. This book introduces mixed modelling analysis in a simple and straightforward way, allowing the reader to apply the technique confidently in a wide range of situations. Introduction to Mixed Modelling shows that mixed modelling is a natural extension of the more familiar statistical methods of regression analysis and analysis of variance. In doing so, it provides the ideal introduction to this important statistical technique for those engaged in the statistical analysis of data. This essential book: Demonstrates the power of mixed modelling in a wide range of disciplines, including industrial research, social sciences, genetics, clinical research, ecology and agricultural research. Illustrates how the capabilities of regression analysis can be combined with those of ANOVA by the specification of a mixed model. Introduces the criterion of Restricted Maximum Likelihood (REML) for the fitting of a mixed model to data. Presents the application of mixed model analysis to a wide range of situations and explains how to obtain and interpret Best Linear Unbiased Predictors (BLUPs). Features a supplementary website containing solutions to exercises, further examples, and links to the computer software systems GenStat and R. This book provides a comprehensive introduction to mixed modelling, ideal for final year undergraduate students, postgraduate students and professional researchers alike. Readers will come from a wide range of scientific disciplines including statistics, biology, bioinformatics, medicine, agriculture, engineering, economics, and social sciences.



Introduction to Regression Analysis

Introduction to Regression Analysis Author Michael A. Golberg
ISBN-10 9781853126246
Release 2004
Pages 436
Download Link Click Here

In order to apply regression analysis effectively, it is necessary to understand both the underlying theory and its practical application. This book explores conventional topics as well as recent practical developments, linking theory with application. Intended to continue from where most basic statistics texts end, it is designed primarily for advanced undergraduates, graduate students and researchers in various fields of engineering, chemical and physical sciences, mathematical sciences and statistics.



Understanding Regression Analysis

Understanding Regression Analysis Author Larry D. Schroeder
ISBN-10 0803927584
Release 1986-04-01
Pages 95
Download Link Click Here

The authors have provided beginners with a background to the frequently-used technique of linear regression. It is not intended to be a substitute for a course or textbook in statistics, but rather a stop-gap for students who encounter empirical work before undertaking a statistics course. It provides a heuristic explanation of the procedures and terms used in regression analysis and has been written at the most elementary level.



Applied Regression Modeling

Applied Regression Modeling Author Iain Pardoe
ISBN-10 9781118345047
Release 2013-01-07
Pages 346
Download Link Click Here

Praise for the First Edition "The attention to detail is impressive. The book is very well written and the author is extremely careful with his descriptions . . . the examples are wonderful." —The American Statistician Fully revised to reflect the latest methodologies and emerging applications, Applied Regression Modeling, Second Edition continues to highlight the benefits of statistical methods, specifically regression analysis and modeling, for understanding, analyzing, and interpreting multivariate data in business, science, and social science applications. The author utilizes a bounty of real-life examples, case studies, illustrations, and graphics to introduce readers to the world of regression analysis using various software packages, including R, SPSS, Minitab, SAS, JMP, and S-PLUS. In a clear and careful writing style, the book introduces modeling extensions that illustrate more advanced regression techniques, including logistic regression, Poisson regression, discrete choice models, multilevel models, and Bayesian modeling. In addition, the Second Edition features clarification and expansion of challenging topics, such as: Transformations, indicator variables, and interaction Testing model assumptions Nonconstant variance Autocorrelation Variable selection methods Model building and graphical interpretation Throughout the book, datasets and examples have been updated and additional problems are included at the end of each chapter, allowing readers to test their comprehension of the presented material. In addition, a related website features the book's datasets, presentation slides, detailed statistical software instructions, and learning resources including additional problems and instructional videos. With an intuitive approach that is not heavy on mathematical detail, Applied Regression Modeling, Second Edition is an excellent book for courses on statistical regression analysis at the upper-undergraduate and graduate level. The book also serves as a valuable resource for professionals and researchers who utilize statistical methods for decision-making in their everyday work.



An Introduction to Linear Regression and Correlation

An Introduction to Linear Regression and Correlation Author Allen Louis Edwards
ISBN-10 0716715937
Release 1984
Pages 206
Download Link Click Here

An Introduction to Linear Regression and Correlation has been writing in one form or another for most of life. You can find so many inspiration from An Introduction to Linear Regression and Correlation also informative, and entertaining. Click DOWNLOAD or Read Online button to get full An Introduction to Linear Regression and Correlation book for free.



Regression Analysis by Example

Regression Analysis by Example Author Samprit Chatterjee
ISBN-10 9780470055458
Release 2006-10-20
Pages 416
Download Link Click Here

The essentials of regression analysis through practical applications Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgement. Regression Analysis by Example, Fourth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression. This new edition features the following enhancements: Chapter 12, Logistic Regression, is expanded to reflect the increased use of the logit models in statistical analysis A new chapter entitled Further Topics discusses advanced areas of regression analysis Reorganized, expanded, and upgraded exercises appear at the end of each chapter A fully integrated Web page provides data sets Numerous graphical displays highlight the significance of visual appeal Regression Analysis by Example, Fourth Edition is suitable for anyone with an understanding of elementary statistics. Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions of the techniques themselves, the required assumptions, and the evaluated success of each technique. The methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.



An Introduction to Statistical Learning

An Introduction to Statistical Learning Author Gareth James
ISBN-10 9781461471387
Release 2013-06-24
Pages 426
Download Link Click Here

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.



Regression Analysis and Linear Models

Regression Analysis and Linear Models Author Richard B. Darlington
ISBN-10 9781462521135
Release 2016-09-27
Pages 661
Download Link Click Here

Ephasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable?s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.



Methods and Applications of Linear Models

Methods and Applications of Linear Models Author Ronald R. Hocking
ISBN-10 9781118593028
Release 2013-07-01
Pages 720
Download Link Click Here

Praise for the Second Edition "An essential desktop reference book . . . it should definitely be on your bookshelf." —Technometrics A thoroughly updated book, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition features innovative approaches to understanding and working with models and theory of linear regression. The Third Edition provides readers with the necessary theoretical concepts, which are presented using intuitive ideas rather than complicated proofs, to describe the inference that is appropriate for the methods being discussed. The book presents a unique discussion that combines coverage of mathematical theory of linear models with analysis of variance models, providing readers with a comprehensive understanding of both the theoretical and technical aspects of linear models. With a new focus on fixed effects models, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition also features: Newly added topics including least squares, the cell means model, and graphical inspection of data in the AVE method Frequent conceptual and numerical examples for clarifying the statistical analyses and demonstrating potential pitfalls Graphics and computations developed using JMP® software to accompany the concepts and techniques presented Numerous exercises presented to test readers and deepen their understanding of the material An ideal book for courses on linear models and linear regression at the undergraduate and graduate levels, the Third Edition of Methods and Applications of Linear Models: Regression and the Analysis of Variance is also a valuable reference for applied statisticians and researchers who utilize linear model methodology.



Introduction to Regression Modeling

Introduction to Regression Modeling Author Bovas Abraham
ISBN-10 0534420753
Release 2006
Pages 433
Download Link Click Here

Looking for an easy-to-understand text to guide you through the tough topic of regression modeling? INTRODUCTION TO REGRESSION MODELING (WITH CD-ROM) offers a blend of theory and regression applications and will give you the practice you need to tackle this subject through exercises, case studies. and projects that have you identify a problem of interest and collect data relevant to the problem's solution. The book goes beyond linear regression by covering nonlinear models, regression models with time series errors, and logistic and Poisson regression models.