Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Introduction to Randomized Controlled Clinical Trials Second Edition

Introduction to Randomized Controlled Clinical Trials  Second Edition Author John N.S. Matthews
ISBN-10 9781420011302
Release 2006-06-26
Pages 302
Download Link Click Here

Evidence from randomized controlled clinical trials is widely accepted as the only sound basis for assessing the efficacy of new medical treatments. Statistical methods play a key role in all stages of these trials, including their justification, design, and analysis. This second edition of Introduction to Randomized Controlled Clinical Trials provides a concise presentation of the principles applied in this area. It details the concepts behind randomization and methods for designing and analyzing trials and also includes information on meta-analysis and specialized designs, such as cross-over trials, cluster-randomized designs, and equivalence studies. This latest edition features new and revised references, examples, exercises, and a new chapter dedicated to binary outcomes and survival analysis. It also presents numerous examples taken from the medical literature, contains exercises at the end of each chapter, and offers solutions in an appendix. The author uses Minitab and R software throughout the text for implementing the methods that are presented. Comprehensive and accessible, Introduction to Randomized Controlled Clinical Trials is well-suited for those familiar with elementary statistical ideas and methods who want to further their knowledge of the subject.



Introduction to Statistical Methods for Clinical Trials

Introduction to Statistical Methods for Clinical Trials Author Thomas D. Cook
ISBN-10 9781584880271
Release 2007-11-19
Pages 464
Download Link Click Here

Clinical trials have become essential research tools for evaluating the benefits and risks of new interventions for the treatment and prevention of diseases, from cardiovascular disease to cancer to AIDS. Based on the authors’ collective experiences in this field, Introduction to Statistical Methods for Clinical Trials presents various statistical topics relevant to the design, monitoring, and analysis of a clinical trial. After reviewing the history, ethics, protocol, and regulatory issues of clinical trials, the book provides guidelines for formulating primary and secondary questions and translating clinical questions into statistical ones. It examines designs used in clinical trials, presents methods for determining sample size, and introduces constrained randomization procedures. The authors also discuss how various types of data must be collected to answer key questions in a trial. In addition, they explore common analysis methods, describe statistical methods that determine what an emerging trend represents, and present issues that arise in the analysis of data. The book concludes with suggestions for reporting trial results that are consistent with universal guidelines recommended by medical journals. Developed from a course taught at the University of Wisconsin for the past 25 years, this textbook provides a solid understanding of the statistical approaches used in the design, conduct, and analysis of clinical trials.



Applied Stochastic Modelling Second Edition

Applied Stochastic Modelling  Second Edition Author Byron J.T. Morgan
ISBN-10 9781420011654
Release 2008-12-02
Pages 368
Download Link Click Here

Highlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and improved figures, this edition offers numerous updates throughout. New to the Second Edition An extended discussion on Bayesian methods A large number of new exercises A new appendix on computational methods The book covers both contemporary and classical aspects of statistics, including survival analysis, Kernel density estimation, Markov chain Monte Carlo, hypothesis testing, regression, bootstrap, and generalised linear models. Although the book can be used without reference to computational programs, the author provides the option of using powerful computational tools for stochastic modelling. All of the data sets and MATLAB® and R programs found in the text as well as lecture slides and other ancillary material are available for download at www.crcpress.com Continuing in the bestselling tradition of its predecessor, this textbook remains an excellent resource for teaching students how to fit stochastic models to data.



Randomized Clinical Trials

Randomized Clinical Trials Author David Machin
ISBN-10 0470319224
Release 2010-05-20
Pages 374
Download Link Click Here

Using examples and case studies from industry, academia and research literature, Randomized Clinical Trials provides a detailed overview of the key issues involved in designing, conducting, analysing and reporting randomized clinical trials. It examines the methodology for conducting Phase III clinical trials, developing the protocols, the practice for capturing, measuring, and analysing the resulting clinical data and their subsequent reporting. Randomized clinical trials are the principal method for determining the relative efficacy and safety of alternative treatments, interventions or medical devices. They are conducted by groups comprising one or more of pharmaceutical and allied health-care organisations, academic institutions, and charity supported research groups. In many cases such trials provide the key evidence necessary for the regulatory approval of a new product for future patient use. Randomized Clinical Trials provides comprehensive coverage of such trials, ranging from elementary to advanced level. Written by authors with considerable experience of clinical trials, Randomized Clinical Trials is an authoritative guide for clinicians, nurses, data managers and medical statisticians involved in clinical trials research and for health care professionals directly involved in patient care in a clinical trial context.



Randomization Bootstrap and Monte Carlo Methods in Biology Third Edition

Randomization  Bootstrap and Monte Carlo Methods in Biology  Third Edition Author Bryan F.J. Manly
ISBN-10 1584885416
Release 2006-08-15
Pages 480
Download Link Click Here

Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. This new edition of the bestselling Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates the value of a number of these methods with an emphasis on biological applications. This textbook focuses on three related areas in computational statistics: randomization, bootstrapping, and Monte Carlo methods of inference. The author emphasizes the sampling approach within randomization testing and confidence intervals. Similar to randomization, the book shows how bootstrapping, or resampling, can be used for confidence intervals and tests of significance. It also explores how to use Monte Carlo methods to test hypotheses and construct confidence intervals. New to the Third Edition Updated information on regression and time series analysis, multivariate methods, survival and growth data as well as software for computational statistics References that reflect recent developments in methodology and computing techniques Additional references on new applications of computer-intensive methods in biology Providing comprehensive coverage of computer-intensive applications while also offering data sets online, Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition supplies a solid foundation for the ever-expanding field of statistics and quantitative analysis in biology.



Introduction to the Theory of Statistical Inference

Introduction to the Theory of Statistical Inference Author Hannelore Liero
ISBN-10 9781466503205
Release 2016-04-19
Pages 284
Download Link Click Here

Based on the authors’ lecture notes, Introduction to the Theory of Statistical Inference presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Suitable for a second-semester undergraduate course on statistical inference, the book offers proofs to support the mathematics. It illustrates core concepts using cartoons and provides solutions to all examples and problems. Highlights Basic notations and ideas of statistical inference are explained in a mathematically rigorous, but understandable, form Classroom-tested and designed for students of mathematical statistics Examples, applications of the general theory to special cases, exercises, and figures provide a deeper insight into the material Solutions provided for problems formulated at the end of each chapter Combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models Theoretical, difficult, or frequently misunderstood problems are marked The book is aimed at advanced undergraduate students, graduate students in mathematics and statistics, and theoretically-interested students from other disciplines. Results are presented as theorems and corollaries. All theorems are proven and important statements are formulated as guidelines in prose. With its multipronged and student-tested approach, this book is an excellent introduction to the theory of statistical inference.



Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Author Henrik Madsen
ISBN-10 9781439891148
Release 2010-11-09
Pages 316
Download Link Click Here

Bridging the gap between theory and practice for modern statistical model building, Introduction to General and Generalized Linear Models presents likelihood-based techniques for statistical modelling using various types of data. Implementations using R are provided throughout the text, although other software packages are also discussed. Numerous examples show how the problems are solved with R. After describing the necessary likelihood theory, the book covers both general and generalized linear models using the same likelihood-based methods. It presents the corresponding/parallel results for the general linear models first, since they are easier to understand and often more well known. The authors then explore random effects and mixed effects in a Gaussian context. They also introduce non-Gaussian hierarchical models that are members of the exponential family of distributions. Each chapter contains examples and guidelines for solving the problems via R. Providing a flexible framework for data analysis and model building, this text focuses on the statistical methods and models that can help predict the expected value of an outcome, dependent, or response variable. It offers a sound introduction to general and generalized linear models using the popular and powerful likelihood techniques. Ancillary materials are available at www.imm.dtu.dk/~hm/GLM



Bayesian Methods for Data Analysis Third Edition

Bayesian Methods for Data Analysis  Third Edition Author Bradley P. Carlin
ISBN-10 1584886986
Release 2008-06-30
Pages 552
Download Link Click Here

Broadening its scope to nonstatisticians, Bayesian Methods for Data Analysis, Third Edition provides an accessible introduction to the foundations and applications of Bayesian analysis. Along with a complete reorganization of the material, this edition concentrates more on hierarchical Bayesian modeling as implemented via Markov chain Monte Carlo (MCMC) methods and related data analytic techniques. New to the Third Edition New data examples, corresponding R and WinBUGS code, and homework problems Explicit descriptions and illustrations of hierarchical modeling—now commonplace in Bayesian data analysis A new chapter on Bayesian design that emphasizes Bayesian clinical trials A completely revised and expanded section on ranking and histogram estimation A new case study on infectious disease modeling and the 1918 flu epidemic A solutions manual for qualifying instructors that contains solutions, computer code, and associated output for every homework problem—available both electronically and in print Ideal for Anyone Performing Statistical Analyses Focusing on applications from biostatistics, epidemiology, and medicine, this text builds on the popularity of its predecessors by making it suitable for even more practitioners and students.



Generalized Linear Mixed Models

Generalized Linear Mixed Models Author Walter W. Stroup
ISBN-10 9781439815137
Release 2016-04-19
Pages 555
Download Link Click Here

Generalized Linear Mixed Models: Modern Concepts, Methods and Applications presents an introduction to linear modeling using the generalized linear mixed model (GLMM) as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider. Along with describing common applications of GLMMs, the text introduces the essential theory and main methodology associated with linear models that accommodate random model effects and non-Gaussian data. Unlike traditional linear model textbooks that focus on normally distributed data, this one adopts a generalized mixed model approach throughout: data for linear modeling need not be normally distributed and effects may be fixed or random. With numerous examples using SAS® PROC GLIMMIX, this book is ideal for graduate students in statistics, statistics professionals seeking to update their knowledge, and researchers new to the generalized linear model thought process. It focuses on data-driven processes and provides context for extending traditional linear model thinking to generalized linear mixed modeling. See Professor Stroup discuss the book.



Understanding Advanced Statistical Methods

Understanding Advanced Statistical Methods Author Peter Westfall
ISBN-10 9781466512108
Release 2013-04-09
Pages 569
Download Link Click Here

Providing a much-needed bridge between elementary statistics courses and advanced research methods courses, Understanding Advanced Statistical Methods helps students grasp the fundamental assumptions and machinery behind sophisticated statistical topics, such as logistic regression, maximum likelihood, bootstrapping, nonparametrics, and Bayesian methods. The book teaches students how to properly model, think critically, and design their own studies to avoid common errors. It leads them to think differently not only about math and statistics but also about general research and the scientific method. With a focus on statistical models as producers of data, the book enables students to more easily understand the machinery of advanced statistics. It also downplays the "population" interpretation of statistical models and presents Bayesian methods before frequentist ones. Requiring no prior calculus experience, the text employs a "just-in-time" approach that introduces mathematical topics, including calculus, where needed. Formulas throughout the text are used to explain why calculus and probability are essential in statistical modeling. The authors also intuitively explain the theory and logic behind real data analysis, incorporating a range of application examples from the social, economic, biological, medical, physical, and engineering sciences. Enabling your students to answer the why behind statistical methods, this text teaches them how to successfully draw conclusions when the premises are flawed. It empowers them to use advanced statistical methods with confidence and develop their own statistical recipes. Ancillary materials are available on the book’s website.



Sample Size Calculations in Clinical Research

Sample Size Calculations in Clinical Research Author Shein-Chung Chow
ISBN-10 9780824748234
Release 2003-03-04
Pages 358
Download Link Click Here

Sample size calculation plays an important role in clinical research. It is not uncommon, however, to observe discrepancies among study objectives (or hypotheses), study design, statistical analysis (or test statistic), and sample size calculation. Focusing on sample size calculation for studies conducted during the various phases of clinical research and development, Sample Size Calculation in Clinical Research explores the causes of discrepancies and how to avoid them. This volume provides formulas and procedures for determination of sample size required not only for testing equality, but also for testing non-inferiority/superiority, and equivalence (similarity) based on both untransformed (raw) data and log-transformed data under a parallel-group design or a crossover design with equal or unequal ratio of treatment allocations. It contains a comprehensive and unified presentation of statistical procedures for sample size calculation that are commonly employed at various phases of clinical development. Each chapter includes, whenever possible, real examples of clinical studies from therapeutic areas such as cardiovascular, central nervous system, anti-infective, oncology, and women's health to demonstrate the clinical and statistical concepts, interpretations, and their relationships and interactions. The book highlights statistical procedures for sample size calculation and justification that are commonly employed in clinical research and development. It provides clear, illustrated explanations of how the derived formulas and/or statistical procedures can be used.



Introduction to Statistical Methods for Clinical Trials

Introduction to Statistical Methods for Clinical Trials Author Thomas D. Cook
ISBN-10 9781420009965
Release 2007-11-19
Pages 464
Download Link Click Here

Clinical trials have become essential research tools for evaluating the benefits and risks of new interventions for the treatment and prevention of diseases, from cardiovascular disease to cancer to AIDS. Based on the authors’ collective experiences in this field, Introduction to Statistical Methods for Clinical Trials presents various statistical topics relevant to the design, monitoring, and analysis of a clinical trial. After reviewing the history, ethics, protocol, and regulatory issues of clinical trials, the book provides guidelines for formulating primary and secondary questions and translating clinical questions into statistical ones. It examines designs used in clinical trials, presents methods for determining sample size, and introduces constrained randomization procedures. The authors also discuss how various types of data must be collected to answer key questions in a trial. In addition, they explore common analysis methods, describe statistical methods that determine what an emerging trend represents, and present issues that arise in the analysis of data. The book concludes with suggestions for reporting trial results that are consistent with universal guidelines recommended by medical journals. Developed from a course taught at the University of Wisconsin for the past 25 years, this textbook provides a solid understanding of the statistical approaches used in the design, conduct, and analysis of clinical trials.



Clinical Trials

Clinical Trials Author Steven Piantadosi
ISBN-10 9781118625859
Release 2013-05-29
Pages 720
Download Link Click Here

Learn rigorous statistical methods to ensure valid clinical trials This Second Edition of the critically hailed Clinical Trials builds on the text's reputation as a straightforward and authoritative presentation of statistical methods for clinical trials. Readers are introduced to the fundamentals of design for various types of clinical trials and then skillfully guided through the complete process of planning the experiment, assembling a study cohort, assessing data, and reporting results. Throughout the process, the author alerts readers to problems that may arise during the course of the trial and provides commonsense solutions. The author bases the revisions and updates on his own classroom experience, as well as feedback from students, instructors, and medical and statistical professionals involved in clinical trials. The Second Edition greatly expands its coverage, ranging from statistical principles to controversial topics, including alternative medicine and ethics. At the same time, it offers more pragmatic advice for issues such as selecting outcomes, sample size, analysis, reporting, and handling allegations of misconduct. Readers familiar with the First Edition will discover completely new chapters, including: * Contexts for clinical trials * Statistical perspectives * Translational clinical trials * Dose-finding and dose-ranging designs Each chapter is accompanied by a summary to reinforce the key points. Revised discussion questions stimulate critical thinking and help readers understand how they can apply their newfound knowledge, and updated references are provided to direct readers to the most recent literature. This text distinguishes itself with its accessible and broad coverage of statistical design methods--the crucial building blocks of clinical trials and medical research. Readers learn to conduct clinical trials that produce valid qualitative results backed by rigorous statistical methods.



Practical Statistics for Medical Research

Practical Statistics for Medical Research Author Douglas G. Altman
ISBN-10 0412276305
Release 1990-11-22
Pages 624
Download Link Click Here

Most medical researchers, whether clinical or non-clinical, receive some background in statistics as undergraduates. However, it is most often brief, a long time ago, and largely forgotten by the time it is needed. Furthermore, many introductory texts fall short of adequately explaining the underlying concepts of statistics, and often are divorced from the reality of conducting and assessing medical research. Practical Statistics for Medical Research is a problem-based text for medical researchers, medical students, and others in the medical arena who need to use statistics but have no specialized mathematics background. The author draws on twenty years of experience as a consulting medical statistician to provide clear explanations to key statistical concepts, with a firm emphasis on practical aspects of designing and analyzing medical research. The text gives special attention to the presentation and interpretation of results and the many real problems that arise in medical research.



Bayesian Adaptive Methods for Clinical Trials

Bayesian Adaptive Methods for Clinical Trials Author Scott M. Berry
ISBN-10 1439825513
Release 2010-07-19
Pages 323
Download Link Click Here

Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer’s disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adaptive Methods for Clinical Trials explores the growing role of Bayesian thinking in the rapidly changing world of clinical trial analysis. The book first summarizes the current state of clinical trial design and analysis and introduces the main ideas and potential benefits of a Bayesian alternative. It then gives an overview of basic Bayesian methodological and computational tools needed for Bayesian clinical trials. With a focus on Bayesian designs that achieve good power and Type I error, the next chapters present Bayesian tools useful in early (Phase I) and middle (Phase II) clinical trials as well as two recent Bayesian adaptive Phase II studies: the BATTLE and ISPY-2 trials. In the following chapter on late (Phase III) studies, the authors emphasize modern adaptive methods and seamless Phase II–III trials for maximizing information usage and minimizing trial duration. They also describe a case study of a recently approved medical device to treat atrial fibrillation. The concluding chapter covers key special topics, such as the proper use of historical data, equivalence studies, and subgroup analysis. For readers involved in clinical trials research, this book significantly updates and expands their statistical toolkits. The authors provide many detailed examples drawing on real data sets. The R and WinBUGS codes used throughout are available on supporting websites. Scott Berry talks about the book on the CRC Press YouTube Channel.



Cluster Randomised Trials Second Edition

Cluster Randomised Trials  Second Edition Author Richard J. Hayes
ISBN-10 1498728227
Release 2017
Pages 400
Download Link Click Here

Cluster Randomised Trials, Second Edition discusses the design, conduct, and analysis of trials that randomise groups of individuals to different treatments. It explores the advantages of cluster randomisation, with special attention given to evaluating the effects of interventions against infectious diseases. Avoiding unnecessary mathematical detail, the book covers basic concepts underlying the use of cluster randomisation, such as direct, indirect, and total effects. In the time since the publication of the first edition, the use of cluster randomised trials (CRTs) has increased substantially, which is reflected in the updates to this edition. There are greatly expanded sections on randomisation, sample size estimation, and alternative designs, including new material on stepped wedge designs. There is a new section on handling ordinal outcome data, and an appendix with descriptions and/or generating code of the example data sets. Although the book mainly focuses on medical and public health applications, it shows that the rigorous evidence of intervention effects provided by CRTs has the potential to inform public policy in a wide range of other areas. The book encourages readers to apply the methods to their own trials, reproduce the analyses presented, and explore alternative approaches.



Multiple Testing Problems in Pharmaceutical Statistics

Multiple Testing Problems in Pharmaceutical Statistics Author Alex Dmitrienko
ISBN-10 1584889853
Release 2009-12-08
Pages 320
Download Link Click Here

Useful Statistical Approaches for Addressing Multiplicity Issues Includes practical examples from recent trials Bringing together leading statisticians, scientists, and clinicians from the pharmaceutical industry, academia, and regulatory agencies, Multiple Testing Problems in Pharmaceutical Statistics explores the rapidly growing area of multiple comparison research with an emphasis on pharmaceutical applications. In each chapter, the expert contributors describe important multiplicity problems encountered in pre-clinical and clinical trial settings. The book begins with a broad introduction from a regulatory perspective to different types of multiplicity problems that commonly arise in confirmatory controlled clinical trials, before giving an overview of the concepts, principles, and procedures of multiple testing. It then presents statistical methods for analyzing clinical dose response studies that compare several dose levels with a control as well as statistical methods for analyzing multiple endpoints in clinical trials. After covering gatekeeping procedures for testing hierarchically ordered hypotheses, the book discusses statistical approaches for the design and analysis of adaptive designs and related confirmatory hypothesis testing problems. The final chapter focuses on the design of pharmacogenomic studies based on established statistical principles. It also describes the analysis of data collected in these studies, taking into account the numerous multiplicity issues that occur. This volume explains how to solve critical issues in multiple testing encountered in pre-clinical and clinical trial applications. It presents the necessary statistical methodology, along with examples and software code to show how to use the methods in practice.