Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Inverse Problems for Partial Differential Equations

Inverse Problems for Partial Differential Equations Author Victor Isakov
ISBN-10 9783319516585
Release 2017-03-25
Pages 408
Download Link Click Here

A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.



Methods for Solving Inverse Problems in Mathematical Physics

Methods for Solving Inverse Problems in Mathematical Physics Author Global Express Ltd. Co.
ISBN-10 0824719875
Release 2000-03-21
Pages 744
Download Link Click Here

Developing an approach to the question of existence, uniqueness and stability of solutions, this work presents a systematic elaboration of the theory of inverse problems for all principal types of partial differential equations. It covers up-to-date methods of linear and nonlinear analysis, the theory of differential equations in Banach spaces, applications of functional analysis, and semigroup theory.



Inverse Problems in Partial Differential Equations

Inverse Problems in Partial Differential Equations Author David L. Colton
ISBN-10 0898712521
Release 1990-01-01
Pages 214
Download Link Click Here

Inverse Problems in Partial Differential Equations has been writing in one form or another for most of life. You can find so many inspiration from Inverse Problems in Partial Differential Equations also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Inverse Problems in Partial Differential Equations book for free.



Inverse Problems for Electrical Networks

Inverse Problems for Electrical Networks Author Edward B Curtis
ISBN-10 9789814493826
Release 2000-03-02
Pages 196
Download Link Click Here

This book is a very timely exposition of part of an important subject which goes under the general name of “inverse problems”. The analogous problem for continuous media has been very much studied, with a great deal of difficult mathematics involved, especially partial differential equations. Some of the researchers working on the inverse conductivity problem for continuous media (the problem of recovering the conductivity inside from measurements on the outside) have taken an interest in the authors' analysis of this similar problem for resistor networks. The authors' treatment of inverse problems for electrical networks is at a fairly elementary level. It is accessible to advanced undergraduates, and mathematics students at the graduate level. The topics are of interest to mathematicians working on inverse problems, and possibly to electrical engineers. A few techniques from other areas of mathematics have been brought together in the treatment. It is this amalgamation of such topics as graph theory, medial graphs and matrix algebra, as well as the analogy to inverse problems for partial differential equations, that makes the book both original and interesting. Contents:Circular Planar GraphsResistor NetworksHarmonic FunctionsCharacterization IAdjoining EdgesCharacterization IIMedial GraphsRecovering a GraphLayered Networks Readership: Graduate students and researchers in applied mathematics and electrical and electronic engineering. Keywords:Inverse Problems;Resistor Network;Schur Complement;Medial Graph;Circular Planar Graph;Kirchhoff Matrix;Response Matrix;“Y-Delta” Transformation;Gamma-Harmonic Function;Connections;Dirichlet Problem



An Introduction to the Mathematical Theory of Inverse Problems

An Introduction to the Mathematical Theory of Inverse Problems Author Andreas Kirsch
ISBN-10 1441984747
Release 2011-03-24
Pages 310
Download Link Click Here

This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.



Introduction to Inverse Problems for Differential Equations

Introduction to Inverse Problems for Differential Equations Author Alemdar Hasanov Hasanoğlu
ISBN-10 9783319627977
Release 2017-08-29
Pages 261
Download Link Click Here

This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here are based on the basic and commonly used mathematical models governed by PDEs. These chapters describe not only these inverse problems, but also main inversion methods and techniques. Since the most distinctive features of any inverse problems related to PDEs are hidden in the properties of the corresponding solutions to direct problems, special attention is paid to the investigation of these properties.



Partial Differential Equations I

Partial Differential Equations I Author Michael Eugene Taylor
ISBN-10 0387946535
Release 1996-01-01
Pages 563
Download Link Click Here

This book is intended to be a comprehensive introduction to the subject of partial differential equations. It should be useful to graduate students at all levels beyond that of a basic course in measure theory. It should also be of interest to professional mathematicians in analysis, mathematical physics, and differential geometry. This work will be divided into three volumes, the first of which focuses on the theory of ordinary differential equations and a survey of basic linear PDEs.



Geometric Methods in Inverse Problems and PDE Control

Geometric Methods in Inverse Problems and PDE Control Author Chrisopher B. Croke
ISBN-10 9781468493757
Release 2012-12-06
Pages 330
Download Link Click Here

This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume contains a selected number of articles based on lectures delivered at the IMA 2001 Summer Program on "Geometric Methods in Inverse Problems and PDE Control. " The focus of this program was some common techniques used in the study of inverse coefficient problems and control problems for partial differential equations, with particular emphasis on their strong relation to fundamental problems of geometry. Inverse coef ficient problems for partial differential equations arise in many application areas, for instance in medical imaging, nondestructive testing, and geophys ical prospecting. Control problems involving partial differential equations may arise from the need to optimize a given performance criterion, e. g. , to dampen out undesirable vibrations of a structure , or more generally, to obtain a prescribed behaviour of the dynamics.



Linear Inverse Problems and Tikhonov Regularization

Linear Inverse Problems and Tikhonov Regularization Author Mark Gockenbach
ISBN-10 9780883851418
Release 2016-11-24
Pages 333
Download Link Click Here

Inverse problems occur frequently in science and technology, whenever we need to infer causes from effects that we can measure. Mathematically, they are difficult problems because they are unstable: small bits of noise in the measurement can completely throw off the solution. Nevertheless, there are methods for finding good approximate solutions. Linear Inverse Problems and Tikhonov Regularization examines one such method: Tikhonov regularization for linear inverse problems defined on Hilbert spaces. This is a clear example of the power of applying deep mathematical theory to solve practical problems. Beginning with a basic analysis of Tikhonov regularization, this book introduces the singular value expansion for compact operators, and uses it to explain why and how the method works. Tikhonov regularization with seminorms is also analyzed, which requires introducing densely defined unbounded operators and their basic properties. Some of the relevant background is included in appendices, making the book accessible to a wide range of readers.



Partial Differential Equations

Partial Differential Equations Author David Colton
ISBN-10 9780486138435
Release 2012-06-14
Pages 320
Download Link Click Here

This text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Features coverage of integral equations and basic scattering theory. Includes exercises, many with answers. 1988 edition.



Inverse Boundary Spectral Problems

Inverse Boundary Spectral Problems Author Alexander Kachalov
ISBN-10 9781420036220
Release 2001-07-30
Pages 260
Download Link Click Here

Inverse boundary problems are a rapidly developing area of applied mathematics with applications throughout physics and the engineering sciences. However, the mathematical theory of inverse problems remains incomplete and needs further development to aid in the solution of many important practical problems. Inverse Boundary Spectral Problems develop a rigorous theory for solving several types of inverse problems exactly. In it, the authors consider the following: "Can the unknown coefficients of an elliptic partial differential equation be determined from the eigenvalues and the boundary values of the eigenfunctions?" Along with this problem, many inverse problems for heat and wave equations are solved. The authors approach inverse problems in a coordinate invariant way, that is, by applying ideas drawn from differential geometry. To solve them, they apply methods of Riemannian geometry, modern control theory, and the theory of localized wave packets, also known as Gaussian beams. The treatment includes the relevant background of each of these areas. Although the theory of inverse boundary spectral problems has been in development for at least 10 years, until now the literature has been scattered throughout various journals. This self-contained monograph summarizes the relevant concepts and the techniques useful for dealing with them.



An Invitation to Applied Mathematics

An Invitation to Applied Mathematics Author Carmen Chicone
ISBN-10 9780128041543
Release 2016-09-24
Pages 878
Download Link Click Here

An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation introduces the reader to the methodology of modern applied mathematics in modeling, analysis, and scientific computing with emphasis on the use of ordinary and partial differential equations. Each topic is introduced with an attractive physical problem, where a mathematical model is constructed using physical and constitutive laws arising from the conservation of mass, conservation of momentum, or Maxwell's electrodynamics. Relevant mathematical analysis (which might employ vector calculus, Fourier series, nonlinear ODEs, bifurcation theory, perturbation theory, potential theory, control theory, or probability theory) or scientific computing (which might include Newton's method, the method of lines, finite differences, finite elements, finite volumes, boundary elements, projection methods, smoothed particle hydrodynamics, or Lagrangian methods) is developed in context and used to make physically significant predictions. The target audience is advanced undergraduates (who have at least a working knowledge of vector calculus and linear ordinary differential equations) or beginning graduate students. Readers will gain a solid and exciting introduction to modeling, mathematical analysis, and computation that provides the key ideas and skills needed to enter the wider world of modern applied mathematics. Presents an integrated wealth of modeling, analysis, and numerical methods in one volume Provides practical and comprehensible introductions to complex subjects, for example, conservation laws, CFD, SPH, BEM, and FEM Includes a rich set of applications, with more appealing problems and projects suggested



Partial Differential Equations of Applied Mathematics

Partial Differential Equations of Applied Mathematics Author Erich Zauderer
ISBN-10 0471315168
Release 1998-08-04
Pages 894
Download Link Click Here

The only comprehensive guide to modeling, characterizing, and solving partial differential equations This classic text by Erich Zauderer provides a comprehensive account of partial differential equations and their applications. Dr. Zauderer develops mathematical models that give rise to partial differential equations and describes classical and modern solution techniques. With an emphasis on practical applications, he makes liberal use of real-world examples, explores both linear and nonlinear problems, and provides approximate as well as exact solutions. He also describes approximation methods for simplifying complicated solutions and for solving linear and nonlinear problems not readily solved by standard methods. The book begins with a demonstration of how the three basic types of equations (parabolic, hyperbolic, and elliptic) can be derived from random walk models. It continues in a less statistical vein to cover an exceptionally broad range of topics, including stabilities, singularities, transform methods, the use of Green's functions, and perturbation and asymptotic treatments. Features that set Partial Differential Equations of Applied Mathematics, Second Edition above all other texts in the field include: Coverage of random walk problems, discontinuous and singular solutions, and perturbation and asymptotic methods More than 800 practice exercises, many of which are fully worked out Numerous up-to-date examples from engineering and the physical sciences Partial Differential Equations of Applied Mathematics, Second Edition is a superior advanced-undergraduate to graduate-level text for students in engineering, the sciences, and applied mathematics. The title is also a valuable working resource for professionals in these fields. Dr. Zauderer received his doctorate in mathematics from the New York University-Courant Institute. Prior to joining the staff of Polytechnic University, he was a Senior Weitzmann Fellow of the Weitzmann Institute of Science in Rehovot, Israel.



Inverse Problems in the Mathematical Sciences

Inverse Problems in the Mathematical Sciences Author Charles W. Groetsch
ISBN-10 9783322992024
Release 2013-12-14
Pages 154
Download Link Click Here

Inverse problems are immensely important in modern science and technology. However, the broad mathematical issues raised by inverse problems receive scant attention in the university curriculum. This book aims to remedy this state of affairs by supplying an accessible introduction, at a modest mathematical level, to the alluring field of inverse problems. Many models of inverse problems from science and engineering are dealt with and nearly a hundred exercises, of varying difficulty, involving mathematical analysis, numerical treatment, or modelling of inverse problems, are provided. The main themes of the book are: causation problem modeled as integral equations; model identification problems, posed as coefficient determination problems in differential equations; the functional analytic framework for inverse problems; and a survey of the principal numerical methods for inverse problems. An extensive annotated bibliography furnishes leads on the history of inverse problems and a guide to the frontiers of current research.



Numerical Methods for Solving Inverse Problems of Mathematical Physics

Numerical Methods for Solving Inverse Problems of Mathematical Physics Author A. A. Samarskii
ISBN-10 9783110205794
Release 2007-01-01
Pages 452
Download Link Click Here

The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.



Boundary Value Problems of Mathematical Physics

Boundary Value Problems of Mathematical Physics Author Ivar Stakgold
ISBN-10 9781611972382
Release 2000-06-30
Pages 748
Download Link Click Here

For more than 30 years, this two-volume set has helped prepare graduate students to use partial differential equations and integral equations to handle significant problems arising in applied mathematics, engineering, and the physical sciences. Originally published in 1967, this graduate-level introduction is devoted to the mathematics needed for the modern approach to boundary value problems using Green's functions and using eigenvalue expansions. Now a part of SIAM's Classics series, these volumes contain a large number of concrete, interesting examples of boundary value problems for partial differential equations that cover a variety of applications that are still relevant today. For example, there is substantial treatment of the Helmholtz equation and scattering theory?subjects that play a central role in contemporary inverse problems in acoustics and electromagnetic theory.



Inverse Problem Theory and Methods for Model Parameter Estimation

Inverse Problem Theory and Methods for Model Parameter Estimation Author Albert Tarantola
ISBN-10 0898717922
Release 2005
Pages 342
Download Link Click Here

While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.