Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

JMP Means Business

JMP Means Business Author Josef Schmee
ISBN-10 9781607644279
Release 2010
Pages 591
Download Link Click Here

Designed for business and MBA students, as well as industry professionals who need to use and interpret statistics, "JMP Means Business" covers data collection, descriptive statistics, distributions, confidence intervals and hypothesis tests, and more.

Data Management and Analysis Using JMP

Data Management and Analysis Using JMP Author Jane E Oppenlander
ISBN-10 9781629605401
Release 2017-10-17
Pages 250
Download Link Click Here

A holistic, step-by-step approach to analyzing health care data! Written for both beginner and intermediate JMP users working in or studying health care, Data Management and Analysis Using JMP: Health Care Case Studies bridges the gap between taking traditional statistics courses and successfully applying statistical analysis in the workplace. Authors Jane Oppenlander and Patricia Schaffer begin by illustrating techniques to prepare data for analysis, followed by presenting effective methods to summarize, visualize, and analyze data. The statistical analysis methods covered in the book are the foundational techniques commonly applied to meet regulatory, operational, budgeting, and research needs in the health care field. This example-driven book shows practitioners how to solve real-world problems by using an approach that includes problem definition, data management, selecting the appropriate analysis methods, step-by-step JMP instructions, and interpreting statistical results in context. Practical strategies for selecting appropriate statistical methods, remediating data anomalies, and interpreting statistical results in the domain context are emphasized. The cases presented in Data Management and Analysis Using JMP use multiple statistical methods. A progression of methods--from univariate to multivariate--is employed, illustrating a logical approach to problem-solving. Much of the data used in these cases is open source and drawn from a variety of health care settings. The book offers a welcome guide to working professionals as well as students studying statistics in health care-related fields.

JMP Start Statistics

JMP Start Statistics Author John Sall
ISBN-10 9781629608761
Release 2017-02-21
Pages 660
Download Link Click Here

This book provides hands-on tutorials with just the right amount of conceptual and motivational material to illustrate how to use the intuitive interface for data analysis in JMP. Each chapter features concept-specific tutorials, examples, brief reviews of concepts, step-by-step illustrations, and exercises. Updated for JMP 13, JMP Start Statistics, Sixth Edition includes many new features, including: The redesigned Formula Editor. New and improved ways to create formulas in JMP directly from the data table or dialogs. Interface updates, including improved menu layout. Updates and enhancements in many analysis platforms. New ways to get data into JMP and to save and share JMP results. Many new features that make it easier to use JMP.

Building Better Models with JMP Pro

Building Better Models with JMP Pro Author Jim Grayson
ISBN-10 9781629599564
Release 2015-08-01
Pages 352
Download Link Click Here

This book provides an example-based introduction to business analytics, with a proven process that guides you in the application of modeling tools and concepts. It gives you the "what, why, and how" of using JMP Pro for building and applying analytic models. It will greatly benefit faculty members who teach any of the following subjects at the lower to upper graduate level: predictive modeling, data mining, and business analytics. Novice to advanced users in business statistics, business analytics, and predictive modeling will find that it provides a peek inside the black box of algorithms and the methods used. Topics include: regression, logistic regression, classification and regression trees, neural networks, model cross-validation, model comparison and selection, and data reduction techniques. --

Market Data Analysis Using JMP

Market Data Analysis Using JMP Author Walter R. Paczkowski
ISBN-10 9781629604855
Release 2018-02-05
Pages 378
Download Link Click Here

With the powerful interactive and visual functionality of JMP, you can dynamically analyze market data to transform it into actionable and useful information with clear, concise, and insightful reports and displays. Market Data Analysis Using JMP is a unique example-driven book because it has a specific application focus: market data analysis. A working knowledge of JMP will help you turn your market data into vital knowledge that will help you succeed in a highly competitive, fast-moving, and dynamic business world. This book can be used as a stand-alone resource for working professionals, or as a supplement to a business school course in market data research. Anyone who works with market data will benefit from reading and studying this book, then using JMP to apply the dynamic analytical concepts to their market data. After reading this book, you will be able to quickly and effortlessly use JMP to: prepare market data for analysis use and interpret sophisticated statistical methods build choice models estimate regression models to turn data into useful and actionable information Market Data Analysis Using JMP will teach you how to use dynamic graphics to illustrate your market data analysis and explore the vast possibilities that your data can offer!

Fundamentals of Predictive Analytics with JMP Second Edition

Fundamentals of Predictive Analytics with JMP  Second Edition Author Ron Klimberg
ISBN-10 9781629608013
Release 2017-12-19
Pages 406
Download Link Click Here

Written for students in undergraduate and graduate statistics courses, as well as for the practitioner who wants to make better decisions from data and models, this updated and expanded second edition of Fundamentals of Predictive Analytics with JMP(R) bridges the gap between courses on basic statistics, which focus on univariate and bivariate analysis, and courses on data mining and predictive analytics. Going beyond the theoretical foundation, this book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. First, this book teaches you to recognize when it is appropriate to use a tool, what variables and data are required, and what the results might be. Second, it teaches you how to interpret the results and then, step-by-step, how and where to perform and evaluate the analysis in JMP . Using JMP 13 and JMP 13 Pro, this book offers the following new and enhanced features in an example-driven format: an add-in for Microsoft Excel Graph Builder dirty data visualization regression ANOVA logistic regression principal component analysis LASSO elastic net cluster analysis decision trees k-nearest neighbors neural networks bootstrap forests boosted trees text mining association rules model comparison With today’s emphasis on business intelligence, business analytics, and predictive analytics, this second edition is invaluable to anyone who needs to expand his or her knowledge of statistics and to apply real-world, problem-solving analysis. This book is part of the SAS Press program.

Data Mining for Business Analytics

Data Mining for Business Analytics Author Galit Shmueli
ISBN-10 9781118879337
Release 2017-09-12
Pages 576
Download Link Click Here

Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: • Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students • More than a dozen case studies demonstrating applications for the data mining techniques described • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “ This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland,, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 publications including books. Peter C. Bruce is President and Founder of the Institute for Statistics Education at He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective (Wiley) and co-author of Practical Statistics for Data Scientists: 50 Essential Concepts (O’Reilly). Inbal Yahav, PhD, is Professor at the Graduate School of Business Administration at Bar-Ilan University, Israel. She teaches courses in social network analysis, advanced research methods, and software quality assurance. Dr. Yahav received her PhD in Operations Research and Data Mining from the University of Maryland, College Park. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years. Kenneth C. Lichtendahl, Jr., PhD, is Associate Professor at the University of Virginia. He is the Eleanor F. and Phillip G. Rust Professor of Business Administration and teaches MBA courses in decision analysis, data analysis and optimization, and managerial quantitative analysis. He also teaches executive education courses in strategic analysis and decision-making, and managing the corporate aviation function.

Biostatistics Using JMP

Biostatistics Using JMP Author Trevor Bihl
ISBN-10 9781635262414
Release 2017-10-03
Pages 356
Download Link Click Here

Analyze your biostatistics data with JMP! Trevor Bihl's Biostatistics Using JMP: A Practical Guide provides a practical introduction on using JMP, the interactive statistical discovery software, to solve biostatistical problems. Providing extensive breadth, from summary statistics to neural networks, this essential volume offers a comprehensive, step-by-step guide to using JMP to handle your data. The first biostatistical book to focus on software, Biostatistics Using JMP discusses such topics as data visualization, data wrangling, data cleaning, histograms, box plots, Pareto plots, scatter plots, hypothesis tests, confidence intervals, analysis of variance, regression, curve fitting, clustering, classification, discriminant analysis, neural networks, decision trees, logistic regression, survival analysis, control charts, and metaanalysis. Written for university students, professors, those who perform biological/biomedical experiments, laboratory managers, and research scientists, Biostatistics Using JMP provides a practical approach to using JMP to solve your biostatistical problems.

JMP Essentials

JMP Essentials Author Curt Hinrichs
ISBN-10 9781629592886
Release 2014-12-01
Pages 358
Download Link Click Here

Grasp essential steps in order to generate meaningful results quickly with JMP. JMP Essentials: An Illustrated Step-by-Step Guide for New Users, Second Edition is designed for the new or occasional JMP user who needs to generate meaningful graphs or results quickly. Drawing on their own experience working with these customers, the authors provide essential steps for what new users typically need to carry out with JMP. This newest edition has all new instructions and screen shots reflecting the latest release of JMP software. In addition, it has eight new detailed sections and 10 new subsections that include creating maps, filtering data, creating dashboards, and working with Excel data, all of which highlight new, useful and basic level enhancements to JMP. The format of the book is unique. It adopts a show-and-tell design with essential step-by-step instructions and corresponding screen illustrations, which help users quickly see how to generate the desired results. In most cases, each section completes a JMP task, which maximizes the book's utility as a reference. In addition, each chapter contains a family of features that are carefully crafted to first introduce you to basic features and then on to more advanced ones. JMP Essentials: An Illustrated Step-by-Step Guide for New Users, Second Edition is the quickest and most accessible reference book available. This is part of the SAS Press program.

Modern Industrial Statistics

Modern Industrial Statistics Author Ron S. Kenett
ISBN-10 9781118763698
Release 2013-12-16
Pages 592
Download Link Click Here

Fully revised and updated, this book combines a theoretical background with examples and references to R, MINITAB and JMP, enabling practitioners to find state-of-the-art material on both foundation and implementation tools to support their work. Topics addressed include computer-intensive data analysis, acceptance sampling, univariate and multivariate statistical process control, design of experiments, quality by design, and reliability using classical and Bayesian methods. The book can be used for workshops or courses on acceptance sampling, statistical process control, design of experiments, and reliability. Graduate and post-graduate students in the areas of statistical quality and engineering, as well as industrial statisticians, researchers and practitioners in these fields will all benefit from the comprehensive combination of theoretical and practical information provided in this single volume. Modern Industrial Statistics: With applications in R, MINITAB and JMP: Combines a practical approach with theoretical foundations and computational support. Provides examples in R using a dedicated package called MISTAT, and also refers to MINITAB and JMP. Includes exercises at the end of each chapter to aid learning and test knowledge. Provides over 40 data sets representing real-life case studies. Is complemented by a comprehensive website providing an introduction to R, and installations of JMP scripts and MINITAB macros, including effective tutorials with introductory material:

Optimal Design of Experiments

Optimal Design of Experiments Author Peter Goos
ISBN-10 9781119976165
Release 2011-06-28
Pages 304
Download Link Click Here

"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.

Practical Time Series Analysis Using SAS

Practical Time Series Analysis Using SAS Author Anders Milhoj
ISBN-10 9781612901701
Release 2013
Pages 204
Download Link Click Here

Anders Milhøj's Practical Time Series Analysis Using SAS explains and demonstrates through examples how you can use SAS for time series analysis. It offers modern procedures for forecasting, seasonal adjustments, and decomposition of time series that can be used without involved statistical reasoning. The book teaches, with numerous examples, how to apply these procedures with very simple coding. In addition, it also gives the statistical background for interested readers. Beginning with an introductory chapter that covers the practical handling of time series data in SAS using the TIMESERIES and EXPAND procedures, it goes on to explain forecasting, which is found in the ESM procedure; seasonal adjustment, including trading-day correction using PROC X12; and unobserved component models using the UCM procedure.SAS Products and Releases: Base SAS: 9.3 SAS/STAT: 9.3 Operating Systems: Windows

Enterprise Analytics

Enterprise Analytics Author Thomas H. Davenport
ISBN-10 9780133039436
Release 2013
Pages 268
Download Link Click Here

"International Institute for Analytics"--Dust jacket.

Practical Data Analysis with JMP Second Edition

Practical Data Analysis with JMP  Second Edition Author Robert Carver
ISBN-10 9781629592657
Release 2014-07-01
Pages 486
Download Link Click Here

Understand the concepts and techniques of analysis while learning to reason statistically. Being an effective analyst requires that you know how to properly define a problem and apply suitable statistical techniques, as well as clearly and honestly communicate the results with information-rich visualizations and precise language. Being a well-informed consumer of analyses requires the same set of skills so that you can recognize credible, actionable research when you see it. Robert Carver's Practical Data Analysis with JMP, Second Edition uses the powerful interactive and visual approach of JMP to introduce readers to the logic and methods of statistical thinking and data analysis. It enables you to discriminate among and to use fundamental techniques of analysis, enabling you to engage in statistical thinking by analyzing real-world problems. “Application Scenarios” at the end of each chapter challenge you to put your knowledge and skills to use with data sets that go beyond mere repetition of chapter examples, and three new review chapters help readers integrate ideas and techniques. In addition, the scope and sequence of the chapters have been updated with more coverage of data management and analysis of data. The book can stand on its own as a learning resource for professionals or be used to supplement a standard college-level introduction-to-statistics textbook. It includes varied examples and problems that rely on real sets of data, typically starting with an important or interesting research question that an investigator has pursued. Reflective of the broad applicability of statistical reasoning, the problems come from a wide variety of disciplines, including engineering, life sciences, business, economics, among Practical Data Analysis with JMP, Second Edition introduces you to the major platforms and essential features of JMP and will leave you with a sufficient background and the confidence to continue your exploration independently. This book is part of the SAS Press program.

An Introduction to Statistical Methods and Data Analysis

An Introduction to Statistical Methods and Data Analysis Author R. Lyman Ott
ISBN-10 9781305465527
Release 2015-05-28
Pages 1296
Download Link Click Here

Ott and Longnecker's AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Seventh Edition, provides a broad overview of statistical methods for advanced undergraduate and graduate students from a variety of disciplines who have little or no prior course work in statistics. The authors teach students to solve problems encountered in research projects, to make decisions based on data in general settings both within and beyond the university setting, and to become critical readers of statistical analyses in research papers and news reports. The first eleven chapters present material typically covered in an introductory statistics course, as well as case studies and examples that are often encountered in undergraduate capstone courses. The remaining chapters cover regression modeling and design of experiments. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Statistics and Probability with Applications for Engineers and Scientists

Statistics and Probability with Applications for Engineers and Scientists Author Bhisham C. Gupta
ISBN-10 9781118522202
Release 2014-03-06
Pages 896
Download Link Click Here

Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.

Methods and Applications of Linear Models

Methods and Applications of Linear Models Author Ronald R. Hocking
ISBN-10 9781118593028
Release 2013-07-01
Pages 720
Download Link Click Here

Praise for the Second Edition "An essential desktop reference book . . . it should definitely be on your bookshelf." —Technometrics A thoroughly updated book, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition features innovative approaches to understanding and working with models and theory of linear regression. The Third Edition provides readers with the necessary theoretical concepts, which are presented using intuitive ideas rather than complicated proofs, to describe the inference that is appropriate for the methods being discussed. The book presents a unique discussion that combines coverage of mathematical theory of linear models with analysis of variance models, providing readers with a comprehensive understanding of both the theoretical and technical aspects of linear models. With a new focus on fixed effects models, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition also features: Newly added topics including least squares, the cell means model, and graphical inspection of data in the AVE method Frequent conceptual and numerical examples for clarifying the statistical analyses and demonstrating potential pitfalls Graphics and computations developed using JMP® software to accompany the concepts and techniques presented Numerous exercises presented to test readers and deepen their understanding of the material An ideal book for courses on linear models and linear regression at the undergraduate and graduate levels, the Third Edition of Methods and Applications of Linear Models: Regression and the Analysis of Variance is also a valuable reference for applied statisticians and researchers who utilize linear model methodology.