Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

 An ideal text for undergraduate courses, this volume takes an axiomatic approach that covers relations between the basic theorems, conics, coordinate systems and linear transformations, quadric surfaces, and the Jordan canonical form. 1962 edition.

 This undergraduate text develops the geometry of plane and space, leading up to conics and quadrics, within the context of metrical, affine, and projective transformations. 1953 edition.

 Highlighted by numerous examples, this book explores methods of the projective geometry of the plane. Examines the conic, the general equation of the 2nd degree, and the relationship between Euclidean and projective geometry. 1960 edition.

 Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

 This lucid and accessible text provides an introductory guide to projective geometry, an area of mathematics concerned with the properties and invariants of geometric figures under projection. Including numerous worked examples and exercises throughout, the book covers axiomatic geometry, field planes and PG(r, F), coordinating a projective plane, non-Desarguesian planes, conics and quadrics in PG(3, F). Assuming familiarity with linear algebra, elementary group theory, partial differentiation and finite fields, as well as some elementary coordinate geometry, this text is ideal for 3rd and 4th year mathematics undergraduates.

 V. I. Arnold reveals some unexpected connections between such apparently unrelated theories as Galois fields, dynamical systems, ergodic theory, statistics, chaos and the geometry of projective structures on finite sets. The author blends experimental results with examples and geometrical explorations to make these findings accessible to a broad range of mathematicians, from undergraduate students to experienced researchers.

 This richly detailed overview surveys the evolution of geometrical ideas and thedevelopment of the concepts of modern geometry from ancient times to the present.Topics include projective, Euclidean, and non-Euclidean geometry as well as the roleof geometry in Newtonian physics, calculus, and relativity. Over 100 exercises withanswers. Includes a new Introduction by Peter Ruane.Reprint of The John Day Company, Inc., New York, 1966

 Whicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as "a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning." This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (etheric) forces at work in nature--in plants, animals and in the human being.

 This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner." Chapter 1 serves as reference, consisting of the proofs of certain isolated algebraic theorems. Subsequent chapters explore affine and projective geometry, symplectic and orthogonal geometry, the general linear group, and the structure of symplectic and orthogonal groups. The author offers suggestions for the use of this book, which concludes with a bibliography and index.

 Concise undergraduate-level text by a prominent mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement. Includes answers to exercises. 1962 edition.

 "Geometry Of Conics deals with the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, this book moves to less trivial results, both classical and contemporary. It demonstrates the advantage of purely geometric methods of studying conics."--Publisher's website.

 Text from preface: "This book provides an introduction to the differential geometry of curves and surfaces in three-dimensional Euclidean space"

 An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

 This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.