Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Abstract Lie Algebras

Abstract Lie Algebras Author David J Winter
ISBN-10 9780486783468
Release 2013-12-01
Pages 160
Download Link Click Here

Solid but concise, this account of Lie algebra emphasizes the theory's simplicity and offers new approaches to major theorems. Author David J. Winter, a Professor of Mathematics at the University of Michigan, also presents a general, extensive treatment of Cartan and related Lie subalgebras over arbitrary fields. Preliminary material covers modules and nonassociate algebras, followed by a compact, self-contained development of the theory of Lie algebras of characteristic 0. Topics include solvable and nilpotent Lie algebras, Cartan subalgebras, and Levi's radical splitting theorem and the complete reducibility of representations of semisimple Lie algebras. Additional subjects include the isomorphism theorem for semisimple Lie algebras and their irreducible modules, automorphism of Lie algebras, and the conjugacy of Cartan subalgebras and Borel subalgebras. An extensive theory of Cartan and related subalgebras of Lie algebras over arbitrary fields is developed in the final chapter, and an appendix offers background on the Zariski topology.



Lie Algebras

Lie Algebras Author Nathan Jacobson
ISBN-10 9780486136790
Release 2013-09-16
Pages 352
Download Link Click Here

DIVDefinitive treatment of important subject in modern mathematics. Covers split semi-simple Lie algebras, universal enveloping algebras, classification of irreducible modules, automorphisms, simple Lie algebras over an arbitrary field, etc. Index. /div



Lie Groups Lie Algebras and Some of Their Applications

Lie Groups  Lie Algebras  and Some of Their Applications Author Robert Gilmore
ISBN-10 9780486131566
Release 2012-05-23
Pages 608
Download Link Click Here

This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.



Semi Simple Lie Algebras and Their Representations

Semi Simple Lie Algebras and Their Representations Author Robert N. Cahn
ISBN-10 9780486150314
Release 2014-06-10
Pages 176
Download Link Click Here

Designed to acquaint students of particle physics already familiar with SU(2) and SU(3) with techniques applicable to all simple Lie algebras, this text is especially suited to the study of grand unification theories. 1984 edition.



Introduction to Lie Algebras

Introduction to Lie Algebras Author K. Erdmann
ISBN-10 9781846284908
Release 2006-09-28
Pages 251
Download Link Click Here

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.



Lie Groups Physics and Geometry

Lie Groups  Physics  and Geometry Author Robert Gilmore
ISBN-10 9781139469074
Release 2008-01-17
Pages
Download Link Click Here

Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.



Lie Groups Lie Algebras and Their Representations

Lie Groups  Lie Algebras  and Their Representations Author V.S. Varadarajan
ISBN-10 9781461211266
Release 2013-04-17
Pages 434
Download Link Click Here

This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task.



Introduction to Lie Algebras and Representation Theory

Introduction to Lie Algebras and Representation Theory Author J.E. Humphreys
ISBN-10 9781461263982
Release 2012-12-06
Pages 173
Download Link Click Here

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.



Theory of Lie Groups

Theory of Lie Groups Author Claude Chevalley
ISBN-10 9780486829661
Release 2018-03-30
Pages 224
Download Link Click Here

The standard text on the subject for many years, this introductory treatment covers classical linear groups, topological groups, manifolds, analytic groups, differential calculus of Cartan, and compact Lie groups and their representations. 1946 edition.



Lie Algebras In Particle Physics

Lie Algebras In Particle Physics Author Howard Georgi
ISBN-10 9780429967764
Release 2018-05-04
Pages 340
Download Link Click Here

Howard Georgi is the co-inventor (with Sheldon Glashow) of the SU(5) theory. This extensively revised and updated edition of his classic text makes the theory of Lie groups accessible to graduate students, while offering a perspective on the way in which knowledge of such groups can provide an insight into the development of unified theories of strong, weak, and electromagnetic interactions.



Character Theory of Finite Groups

Character Theory of Finite Groups Author Mark L. Lewis
ISBN-10 9780821848272
Release 2010-09-17
Pages 179
Download Link Click Here

This volume contains a collection of papers from the Conference on Character Theory of Finite Groups, held at the Universitat de Valencia, Spain, on June 3-5, 2009, in honor of I. Martin Isaacs. The topics include permutation groups, character theory, p-groups, and group rings. The research articles feature new results on large normal abelian subgroups of p-groups, construction of certain wreath products, computing idempotents in group algebras of finite groups, and using dual pairs to study representations of cross characteristic in classical groups. The expository articles present results on vertex subgroups, measuring theorems in permutation groups, the development of super character theory, and open problems in character theory.



Lie Groups for Pedestrians

Lie Groups for Pedestrians Author Harry J. Lipkin
ISBN-10 0486421856
Release 2002
Pages 182
Download Link Click Here

This book shows how the well-known methods of angular momentum algebra can be extended to treat other Lie groups. Chapters cover isospin; the three-dimensional harmonic oscillator; algebras of operators that change the number of particles; permutations, bookkeeping, and Young diagrams; and more. 1966 edition.



Several Complex Variables with Connections to Algebraic Geometry and Lie Groups

Several Complex Variables with Connections to Algebraic Geometry and Lie Groups Author Joseph L. Taylor
ISBN-10 9780821831786
Release 2002
Pages 507
Download Link Click Here

This text presents an integrated development of the theory of several complex variables and complex algebraic geometry, leading to proofs of Serre's celebrated GAGA theorems relating the two subjects, and including applications to the representation theory of complex semisimple Lie groups. It includes a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic and algebraic sheaves, proofs of the main vanishing theorems for these categories of sheaves, and a complete proof of the finite dimensionality of the cohomology of coherent sheaves on compact varieties. The vanishing theorems have a wide variety of applications and these are covered in detail. Of particular interest are the last three chapters, which are devoted to applications of the preceding material to the study of the structure and representations of complex semisimple Lie groups.Included in this text are introductions to harmonic analysis, the Peter-Weyl theorem, Lie theory and the structure of Lie algebras, semisimple Lie algebras and their representations, algebraic groups and the structure of complex semisimple Lie groups. All of this culminates in Milicic's proof of the Borel-Weil-Bott theorem, which makes extensive use of the material developed earlier in the text. There are numerous examples and exercises in each chapter. This modern treatment of a classic point of view would be an excellent text for a graduate course on several complex variables, as well as a useful reference for the expert.



An Introduction to Algebraic Structures

An Introduction to Algebraic Structures Author Joseph Landin
ISBN-10 9780486150413
Release 2012-08-29
Pages 272
Download Link Click Here

This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.



Lie Groups and Lie Algebras A Physicist s Perspective

Lie Groups and Lie Algebras   A Physicist s Perspective Author Adam M. Bincer
ISBN-10 9780199662920
Release 2012-10-11
Pages 201
Download Link Click Here

This book is intended for graduate students in Physics, especially Elementary Particle Physics. It gives an introduction to group theory for physicists with a focus on Lie groups and Lie algebras.



Lie Groups

Lie Groups Author Daniel Bump
ISBN-10 9781461480242
Release 2013-10-01
Pages 551
Download Link Click Here

This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.



An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras Author Alexander Kirillov
ISBN-10 9780521889698
Release 2008-07-31
Pages 222
Download Link Click Here

This book is an introduction to semisimple Lie algebras; concise and informal, with numerous exercises and examples.