Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Machine Learning

Machine Learning Author Sergios Theodoridis
ISBN-10 9780128017227
Release 2015-04-02
Pages 1062
Download Link Click Here

This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods. The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling. Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied. MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.



Graphical Models for Machine Learning and Digital Communication

Graphical Models for Machine Learning and Digital Communication Author Brendan J. Frey
ISBN-10 026206202X
Release 1998
Pages 195
Download Link Click Here

Content Description. #Includes bibliographical references and index.



Multilinear Subspace Learning

Multilinear Subspace Learning Author Haiping Lu
ISBN-10 9781439857298
Release 2013-12-11
Pages 296
Download Link Click Here

Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL) reduces the dimensionality of big data directly from its natural multidimensional representation, a tensor. Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data gives a comprehensive introduction to both theoretical and practical aspects of MSL for the dimensionality reduction of multidimensional data based on tensors. It covers the fundamentals, algorithms, and applications of MSL. Emphasizing essential concepts and system-level perspectives, the authors provide a foundation for solving many of today’s most interesting and challenging problems in big multidimensional data processing. They trace the history of MSL, detail recent advances, and explore future developments and emerging applications. The book follows a unifying MSL framework formulation to systematically derive representative MSL algorithms. It describes various applications of the algorithms, along with their pseudocode. Implementation tips help practitioners in further development, evaluation, and application. The book also provides researchers with useful theoretical information on big multidimensional data in machine learning and pattern recognition. MATLAB® source code, data, and other materials are available at www.comp.hkbu.edu.hk/~haiping/MSL.html



Introduction to Pattern Recognition

Introduction to Pattern Recognition Author Sergios Theodoridis
ISBN-10 0080922759
Release 2010-03-03
Pages 231
Download Link Click Here

Introduction to Pattern Recognition: A Matlab Approach is an accompanying manual to Theodoridis/Koutroumbas' Pattern Recognition. It includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. This text is designed for electronic engineering, computer science, computer engineering, biomedical engineering and applied mathematics students taking graduate courses on pattern recognition and machine learning as well as R&D engineers and university researchers in image and signal processing/analyisis, and computer vision. Matlab code and descriptive summary of the most common methods and algorithms in Theodoridis/Koutroumbas, Pattern Recognition, Fourth Edition Solved examples in Matlab, including real-life data sets in imaging and audio recognition Available separately or at a special package price with the main text (ISBN for package: 978-0-12-374491-3)



Foundations of Optimization

Foundations of Optimization Author Osman Güler
ISBN-10 0387684077
Release 2010-08-03
Pages 442
Download Link Click Here

This book covers the fundamental principles of optimization in finite dimensions. It develops the necessary material in multivariable calculus both with coordinates and coordinate-free, so recent developments such as semidefinite programming can be dealt with.



Introduction to Semi supervised Learning

Introduction to Semi supervised Learning Author Xiaojin Zhu
ISBN-10 9781598295474
Release 2009
Pages 116
Download Link Click Here

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook



Engineering Optimization

Engineering Optimization Author Singiresu S. Rao
ISBN-10 9780470183526
Release 2009-07-20
Pages 813
Download Link Click Here

Technology/Engineering/Mechanical Helps you move from theory to optimizing engineering systems in almost any industry Now in its Fourth Edition, Professor Singiresu Rao's acclaimed text Engineering Optimization enables readers to quickly master and apply all the important optimization methods in use today across a broad range of industries. Covering both the latest and classical optimization methods, the text starts off with the basics and then progressively builds to advanced principles and applications. This comprehensive text covers nonlinear, linear, geometric, dynamic, and stochastic programming techniques as well as more specialized methods such as multiobjective, genetic algorithms, simulated annealing, neural networks, particle swarm optimization, ant colony optimization, and fuzzy optimization. Each method is presented in clear, straightforward language, making even the more sophisticated techniques easy to grasp. Moreover, the author provides: Case examples that show how each method is applied to solve real-world problems across a variety of industries Review questions and problems at the end of each chapter to engage readers in applying their newfound skills and knowledge Examples that demonstrate the use of MATLAB® for the solution of different types of practical optimization problems References and bibliography at the end of each chapter for exploring topics in greater depth Answers to Review Questions available on the author's Web site to help readers to test their understanding of the basic concepts With its emphasis on problem-solving and applications, Engineering Optimization is ideal for upper-level undergraduates and graduate students in mechanical, civil, electrical, chemical, and aerospace engineering. In addition, the text helps practicing engineers in almost any industry design improved, more efficient systems at less cost.



Non Convex Optimization for Machine Learning

Non Convex Optimization for Machine Learning Author Prateek Jain
ISBN-10 1680833685
Release 2018-02-28
Pages 218
Download Link Click Here

Non-convex Optimization for Machine Learning takes an in-depth look at the basics of non-convex optimization with applications to machine learning. It introduces the rich literature in this area, as well as equipping the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems. Non-convex Optimization for Machine Learning is as self-contained as possible while not losing focus of the main topic of non-convex optimization techniques. Entire chapters are devoted to present a tutorial-like treatment of basic concepts in convex analysis and optimization, as well as their non-convex counterparts. As such, this monograph can be used for a semester-length course on the basics of non-convex optimization with applications to machine learning. On the other hand, it is also possible to cherry pick individual portions, such the chapter on sparse recovery, or the EM algorithm, for inclusion in a broader course. Several courses such as those in machine learning, optimization, and signal processing may benefit from the inclusion of such topics. Non-convex Optimization for Machine Learning concludes with a look at four interesting applications in the areas of machine learning and signal processing and explores how the non-convex optimization techniques introduced earlier can be used to solve these problems.



The Minimum Description Length Principle

The Minimum Description Length Principle Author Peter D. Grünwald
ISBN-10 9780262072816
Release 2007
Pages 703
Download Link Click Here

This introduction to the MDL Principle provides a reference accessible to graduate students and researchers in statistics, pattern classification, machine learning, and data mining, to philosophers interested in the foundations of statistics, and to researchers in other applied sciences that involve model selection.



Nonnegative Matrix and Tensor Factorizations

Nonnegative Matrix and Tensor Factorizations Author Andrzej Cichocki
ISBN-10 0470747285
Release 2009-07-10
Pages 500
Download Link Click Here

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.



Graph Spectra for Complex Networks

Graph Spectra for Complex Networks Author Piet van Mieghem
ISBN-10 9781139492270
Release 2010-12-02
Pages
Download Link Click Here

Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics.



Understanding Machine Learning

Understanding Machine Learning Author Shai Shalev-Shwartz
ISBN-10 9781107057135
Release 2014-05-19
Pages 409
Download Link Click Here

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.



Statistical Theory

Statistical Theory Author Felix Abramovich
ISBN-10 9781482211849
Release 2013-04-25
Pages 240
Download Link Click Here

Designed for a one-semester advanced undergraduate or graduate course, Statistical Theory: A Concise Introduction clearly explains the underlying ideas and principles of major statistical concepts, including parameter estimation, confidence intervals, hypothesis testing, asymptotic analysis, Bayesian inference, and elements of decision theory. It introduces these topics on a clear intuitive level using illustrative examples in addition to the formal definitions, theorems, and proofs. Based on the authors’ lecture notes, this student-oriented, self-contained book maintains a proper balance between the clarity and rigor of exposition. In a few cases, the authors present a "sketched" version of a proof, explaining its main ideas rather than giving detailed technical mathematical and probabilistic arguments. Chapters and sections marked by asterisks contain more advanced topics and may be omitted. A special chapter on linear models shows how the main theoretical concepts can be applied to the well-known and frequently used statistical tool of linear regression. Requiring no heavy calculus, simple questions throughout the text help students check their understanding of the material. Each chapter also includes a set of exercises that range in level of difficulty.



Big Data

Big Data Author Kuan-Ching Li
ISBN-10 9781482240566
Release 2015-02-23
Pages 498
Download Link Click Here

As today’s organizations are capturing exponentially larger amounts of data than ever, now is the time for organizations to rethink how they digest that data. Through advanced algorithms and analytics techniques, organizations can harness this data, discover hidden patterns, and use the newly acquired knowledge to achieve competitive advantages. Presenting the contributions of leading experts in their respective fields, Big Data: Algorithms, Analytics, and Applications bridges the gap between the vastness of Big Data and the appropriate computational methods for scientific and social discovery. It covers fundamental issues about Big Data, including efficient algorithmic methods to process data, better analytical strategies to digest data, and representative applications in diverse fields, such as medicine, science, and engineering. The book is organized into five main sections: Big Data Management—considers the research issues related to the management of Big Data, including indexing and scalability aspects Big Data Processing—addresses the problem of processing Big Data across a wide range of resource-intensive computational settings Big Data Stream Techniques and Algorithms—explores research issues regarding the management and mining of Big Data in streaming environments Big Data Privacy—focuses on models, techniques, and algorithms for preserving Big Data privacy Big Data Applications—illustrates practical applications of Big Data across several domains, including finance, multimedia tools, biometrics, and satellite Big Data processing Overall, the book reports on state-of-the-art studies and achievements in algorithms, analytics, and applications of Big Data. It provides readers with the basis for further efforts in this challenging scientific field that will play a leading role in next-generation database, data warehousing, data mining, and cloud computing research. It also explores related applications in diverse sectors, covering technologies for media/data communication, elastic media/data storage, cross-network media/data fusion, and SaaS.



Machine Learning

Machine Learning Author Kevin P. Murphy
ISBN-10 9780262018029
Release 2012-08-24
Pages 1067
Download Link Click Here

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.



Optimization

Optimization Author Rajesh Kumar Arora
ISBN-10 9781498721158
Release 2015-05-06
Pages 466
Download Link Click Here

Choose the Correct Solution Method for Your Optimization Problem Optimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden–Fletcher–Goldfarb–Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible directions, genetic algorithms, particle swarm optimization (PSO), simulated annealing, ant colony optimization, and tabu search methods. The author shows how to solve non-convex multi-objective optimization problems using simple modifications of the basic PSO code. The book also introduces multidisciplinary design optimization (MDO) architectures—one of the first optimization books to do so—and develops software codes for the simplex method and affine-scaling interior point method for solving linear programming problems. In addition, it examines Gomory’s cutting plane method, the branch-and-bound method, and Balas’ algorithm for integer programming problems. The author follows a step-by-step approach to developing the MATLAB® codes from the algorithms. He then applies the codes to solve both standard functions taken from the literature and real-world applications, including a complex trajectory design problem of a robot, a portfolio optimization problem, and a multi-objective shape optimization problem of a reentry body. This hands-on approach improves your understanding and confidence in handling different solution methods. The MATLAB codes are available on the book’s CRC Press web page.



The Semantic Web Explained

The Semantic Web Explained Author Péter Szeredi
ISBN-10 9780521700368
Release 2014-09-11
Pages 478
Download Link Click Here

"The Semantic Web is a new area of research and development in the field of computer science that aims to make it easier for computers to process the huge amount of information on the Web, and indeed other large databases, by enabling them not only to read, but also to understand the information. Based on successful courses taught by the authors, and liberally sprinkled with examples and exercises, this comprehensive textbook describes not only the theoretical issues underlying the Semantic Web, but alsoalgorithms, optimisation ideas and implementation details. The book will therefore be valuable to practitioners as well as students, indeed to anyone who is interested in Internet technology, knowledge engineering or description logics. Supplementary materials available online include the source code of program examples and solutions to selected exercises"--