Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Machine Learning

Machine Learning Author Stephen Marsland
ISBN-10 9781498759786
Release 2015-09-15
Pages 457
Download Link Click Here

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area. Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation. New to the Second Edition Two new chapters on deep belief networks and Gaussian processes Reorganization of the chapters to make a more natural flow of content Revision of the support vector machine material, including a simple implementation for experiments New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron Additional discussions of the Kalman and particle filters Improved code, including better use of naming conventions in Python Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author’s website.



A First Course in Machine Learning Second Edition

A First Course in Machine Learning  Second Edition Author Simon Rogers
ISBN-10 9781498738545
Release 2016-10-14
Pages 427
Download Link Click Here

"A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC." —Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden "This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade." —Daniel Barbara, George Mason University, Fairfax, Virginia, USA "The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing ‘just in time’ the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts." —Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark "I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strength...Overall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months." —David Clifton, University of Oxford, UK "The first edition of this book was already an excellent introductory text on machine learning for an advanced undergraduate or taught masters level course, or indeed for anybody who wants to learn about an interesting and important field of computer science. The additional chapters of advanced material on Gaussian process, MCMC and mixture modeling provide an ideal basis for practical projects, without disturbing the very clear and readable exposition of the basics contained in the first part of the book." —Gavin Cawley, Senior Lecturer, School of Computing Sciences, University of East Anglia, UK "This book could be used for junior/senior undergraduate students or first-year graduate students, as well as individuals who want to explore the field of machine learning...The book introduces not only the concepts but the underlying ideas on algorithm implementation from a critical thinking perspective." —Guangzhi Qu, Oakland University, Rochester, Michigan, USA



Handbook of Natural Language Processing Second Edition

Handbook of Natural Language Processing  Second Edition Author Nitin Indurkhya
ISBN-10 142008593X
Release 2010-02-22
Pages 704
Download Link Click Here

The Handbook of Natural Language Processing, Second Edition presents practical tools and techniques for implementing natural language processing in computer systems. Along with removing outdated material, this edition updates every chapter and expands the content to include emerging areas, such as sentiment analysis. New to the Second Edition Greater prominence of statistical approaches New applications section Broader multilingual scope to include Asian and European languages, along with English An actively maintained wiki (http://handbookofnlp.cse.unsw.edu.au) that provides online resources, supplementary information, and up-to-date developments Divided into three sections, the book first surveys classical techniques, including both symbolic and empirical approaches. The second section focuses on statistical approaches in natural language processing. In the final section of the book, each chapter describes a particular class of application, from Chinese machine translation to information visualization to ontology construction to biomedical text mining. Fully updated with the latest developments in the field, this comprehensive, modern handbook emphasizes how to implement practical language processing tools in computational systems.



Hitch 22

Hitch 22 Author Κρίστοφερ Χίτσενς
ISBN-10 9605015218
Release 2011
Pages 487
Download Link Click Here

Hitch 22 has been writing in one form or another for most of life. You can find so many inspiration from Hitch 22 also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Hitch 22 book for free.



Subject Guide to Books in Print 1997 98

Subject Guide to Books in Print 1997 98 Author R R Bowker Publishing
ISBN-10 0835239608
Release 1997
Pages 8320
Download Link Click Here

Subject Guide to Books in Print 1997 98 has been writing in one form or another for most of life. You can find so many inspiration from Subject Guide to Books in Print 1997 98 also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Subject Guide to Books in Print 1997 98 book for free.