Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Make Your Own Neural Network

Make Your Own Neural Network Author Tariq Rashid
ISBN-10 1530826608
Release 2016-03-31
Pages 222
Download Link Click Here

A step-by-step gentle journey through the mathematics of neural networks, and making your own using the Python computer language. Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.



Make Your Own Neural Network an In Depth Visual Introduction for Beginners

Make Your Own Neural Network  an In Depth Visual Introduction for Beginners Author Michael Taylor
ISBN-10 1549869132
Release 2017-10-04
Pages 248
Download Link Click Here

A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow. What you will gain from this book: * A deep understanding of how a Neural Network works. * How to build a Neural Network from scratch using Python. Who this book is for: * Beginners who want to fully understand how networks work, and learn to build two step-by-step examples in Python. * Programmers who need an easy to read, but solid refresher, on the math of neural networks. What's Inside - 'Make Your Own Neural Network: An Indepth Visual Introduction For Beginners' What Is a Neural Network? Neural networks have made a gigantic comeback in the last few decades and you likely make use of them everyday without realizing it, but what exactly is a neural network? What is it used for and how does it fit within the broader arena of machine learning? we gently explore these topics so that we can be prepared to dive deep further on. To start, we'll begin with a high-level overview of machine learning and then drill down into the specifics of a neural network. The Math of Neural Networks On a high level, a network learns just like we do, through trial and error. This is true regardless if the network is supervised, unsupervised, or semi-supervised. Once we dig a bit deeper though, we discover that a handful of mathematical functions play a major role in the trial and error process. It also becomes clear that a grasp of the underlying mathematics helps clarify how a network learns. * Forward Propagation * Calculating The Total Error * Calculating The Gradients * Updating The Weights Make Your Own Artificial Neural Network: Hands on Example You will learn to build a simple neural network using all the concepts and functions we learned in the previous few chapters. Our example will be basic but hopefully very intuitive. Many examples available online are either hopelessly abstract or make use of the same data sets, which can be repetitive. Our goal is to be crystal clear and engaging, but with a touch of fun and uniqueness. This section contains the following eight chapters. Building Neural Networks in Python There are many ways to build a neural network and lots of tools to get the job done. This is fantastic, but it can also be overwhelming when you start, because there are so many tools to choose from. We are going to take a look at what tools are needed and help you nail down the essentials. To build a neural network Tensorflow and Neural Networks There is no single way to build a feedforward neural network with Python, and that is especially true if you throw Tensorflow into the mix. However, there is a general framework that exists that can be divided into five steps and grouped into two parts. We are going to briefly explore these five steps so that we are prepared to use them to build a network later on. Ready? Let's begin. Neural Network: Distinguish Handwriting We are going to dig deep with Tensorflow and build a neural network that can distinguish between handwritten numbers. We'll use the same 5 steps we covered in the high-level overview, and we are going to take time exploring each line of code. Neural Network: Classify Images 10 minutes. That's all it takes to build an image classifier thanks to Google! We will provide a high-level overview of how to classify images using a convolutional neural network (CNN) and Google's Inception V3 model. Once finished, you will be able to tweak this code to classify any type of image sets! Cats, bats, super heroes - the sky's the limit.



Build Your Own Neural Network Today

Build Your Own Neural Network Today Author N. D. Lewis
ISBN-10 1519101236
Release 2015-11-18
Pages 224
Download Link Click Here

BUILD YOUR OWN NEURAL NETWORK TODAY! With an EASY to follow process showing you how to build them FASTER than you imagined possible using R About This Book This rich, fascinating, accessible hands on guide, puts neural networks firmly into the hands of the practitioner. It reveals how they work, and takes you under the hood with an easy to follow process showing you how to build them faster than you imagined possible using the powerful, free R predictive analytics package. Everything you need to get started is contained within this book. It is your detailed, practical, tactical hands on guide. To accelerate your success, it contains exercises with fully worked solutions also provided. Once you have mastered the process, it will be easy for you to translate your knowledge into other powerful applications. A book for everyone interested in machine learning, predictive analytics, neural networks and decision science. Here is what it can do for you: SAVE TIME: Imagine having at your fingertips easy access to the very best neural network models without getting bogged down in mathematical details. In this book, you'll learn fast effective ways to build powerful neural network models easily using R. LEARN EASILY: Build Your Own Neural Network TODAY! Contains an easy to follow process showing you how to build the most successful neural networks used for learning from data; use this guide and build them easily and quickly. BOOST PRODUCTIVITY: Bestselling author and data scientist Dr. N.D. Lewis will show you how to build neural network models in less time than you ever imagined possible! Even if you're a busy professional, a student or hobbyist with little time, you will rapidly enhance your knowledge. EFFORTLESS SUCCESS: By spending as little as 10 minutes a day working through the dozens of real world examples, illustrations, practitioner tips and notes, you'll be able to make giant leaps forward in your knowledge, broaden your skill-set and generate new ideas for your own personal use. ELIMINATE ANXIETY: Forget trying to master every single mathematical detail, instead your goal is to simply to follow the process using real data that only takes about 5 to 15 minutes to complete. Within this process is a series of actions by which the neural network model is explained and constructed. All you have to do is follow the process. It is your checklist for use and reuse. 1 For people interested in statistics, machine learning, data analysis, data mining, and future hands-on practitioners seeking a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. Here are some of the neural network models you will build: Multi layer Perceptrons Probabilistic Neural Networks Generalized Regression Neural Networks Recurrent Neural Networks Buy the book today. Your next big breakthrough using neural networks is only a page away!



Neural Network Programming With Python

Neural Network Programming With Python Author Max Sharp
ISBN-10 1539381951
Release 2016-10-18
Pages
Download Link Click Here

This book is a guide on how to implement a neural network in the Python programming language. It begins by giving you a brief overview of neural networks so as to know what they are, where they are used, and how they are implemented. The next step is an exploration of the backpropagation algorithm. This is the algorithm behind the functionality of neural networks, and it involves a forward and backward pass. Numby is a Python library which can be used for the purpose of implementation of a neural network. This library is discussed in this book, and you are guided on how to use it for that purpose. The functionality of neural networks has to be improved. The various ways to improve how a neural network works is also explored. You are then guided on how to implement neural networks with Neupy, another Python library. The following topics are discussed in this book: - A Brief Overview of Neural Networks - Backpropagation Algorithm - Neural Networks with Numpy - Improving a Neural Network in Python - Neupy - Models in Neural Networks



Neural Network Programming with Java

Neural Network Programming with Java Author Fabio M. Soares
ISBN-10 9781787122970
Release 2017-03-14
Pages 270
Download Link Click Here

Create and unleash the power of neural networks by implementing professional Java code About This Book Learn to build amazing projects using neural networks including forecasting the weather and pattern recognition Explore the Java multi-platform feature to run your personal neural networks everywhere This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This book is for Java developers who want to know how to develop smarter applications using the power of neural networks. Those who deal with a lot of complex data and want to use it efficiently in their day-to-day apps will find this book quite useful. Some basic experience with statistical computations is expected. What You Will Learn Develop an understanding of neural networks and how they can be fitted Explore the learning process of neural networks Build neural network applications with Java using hands-on examples Discover the power of neural network's unsupervised learning process to extract the intrinsic knowledge hidden behind the data Apply the code generated in practical examples, including weather forecasting and pattern recognition Understand how to make the best choice of learning parameters to ensure you have a more effective application Select and split data sets into training, test, and validation, and explore validation strategies In Detail Want to discover the current state-of-art in the field of neural networks that will let you understand and design new strategies to apply to more complex problems? This book takes you on a complete walkthrough of the process of developing basic to advanced practical examples based on neural networks with Java, giving you everything you need to stand out. You will first learn the basics of neural networks and their process of learning. We then focus on what Perceptrons are and their features. Next, you will implement self-organizing maps using practical examples. Further on, you will learn about some of the applications that are presented in this book such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning, and characters recognition (OCR). Finally, you will learn methods to optimize and adapt neural networks in real time. All the examples generated in the book are provided in the form of illustrative source code, which merges object-oriented programming (OOP) concepts and neural network features to enhance your learning experience. Style and approach This book takes you on a steady learning curve, teaching you the important concepts while being rich in examples. You'll be able to relate to the examples in the book while implementing neural networks in your day-to-day applications.



Neural Networks for Beginners

Neural Networks for Beginners Author Bob Story
ISBN-10 1548960292
Release 2017-07-15
Pages 56
Download Link Click Here

Discover How to Build Your Own Neural Network From Scratch...Even if You've Got Zero Math or Coding Skills! What seemed like a lame and unbelievable sci-fi movie a few decades ago is now a reality. Machines can finally think. Maybe not quite as complex as the human brain, but more than enough to make everyone's life a lot easier. Artificial neural networks, based on the neurons found in the human brain give machines a 'brain'. Patterned just like biological neurons, these software or hardware are a variety of the deep learning technology. With their help you can make your computer learn by feeding it data, which will then be generated as the output you desire. It is they to thank for the nanoseconds in which computers operate. It may be science, but it is not actually rocket science. Everyone can learn how to take advantage of the progressed technology of today, get inside the 'brain' of the computers, and train them to perform the desired operations. They have been used in many different industries, and you can rest assured that you will find the perfect purpose for your own neural network. The best part about this book is that it doesn't require a college degree. Your high school math skills are quite enough for you to get a good grasp of the basics and learn how to build an artificial neural network. From non-mathematical explanations to teaching you the basic math behind the ANNs and training you how to actually program one, this book is the most helpful guide you will ever find. Carefully designed for you, the beginner, this guide will help you become a proud owner of a neural network in no time. Here's a Sneak Peak to What You'll Discover Inside this Book: The 6 unique benefits of neural networks The difference between biological and artificial neural networks And inside look into ANN (Artificial Neural Networks) The industries ANN is used in How to teach neural networks to perform specific commands The different types of learning modalities (e.g. Hebbian Learning, unsupervised learning, supervised learning etc.) The architecture of ANN Basic math behind artificial neurons Simple networks for pattern classification The Hebb Rule How to build a simple neural network code The backpropogation algorithm and how to program it And much, much more! There's a lot more inside this book we'll cover, so be prepared. I've made to lucidly explain everything I cover so that there's zero confusion! Download this book today and discover all the intricate details of building your very own Neural Network



Practical Neural Network Recipies in C

Practical Neural Network Recipies in C  Author Masters
ISBN-10 9780080514338
Release 2014-06-28
Pages 493
Download Link Click Here

This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assumed and all models are presented from the ground up. The principle focus of the book is the three layer feedforward network, for more than a decade as the workhorse of professional arsenals. Other network models with strong performance records are also included. Bound in the book is an IBM diskette that includes the source code for all programs in the book. Much of this code can be easily adapted to C compilers. In addition, the operation of all programs is thoroughly discussed both in the text and in the comments within the code to facilitate translation to other languages.



Make Your Own Mandelbrot

Make Your Own Mandelbrot Author Tariq Rashid
ISBN-10 1500552968
Release 2014-04-02
Pages 128
Download Link Click Here

A gentle journey through the mathematics of the Mandelbrot and Julia fractals, and making your own using the Python computer language. Mathematics can be fun, exciting, surprising, and stunningly beautiful. But too few people ever experience this, associating it instead with boring and apparently pointless exercises in trigonometry and solving equations. This guide will take you on an emotional journey, starting from very simple ideas, and exploring some surprising and intricately beautiful behaviors of the very simple mathematics that underlies the famous Mandelbrot fractal. You won't need anything more than basic school mathematics. Part 1 is about ideas. It introduces the mathematical ideas underlying the Mandelbrot fractal, gently with lots of illustrations and examples. Part 2 is practical. It introduces the popular and easy to learn Python programming language, and gradually builds up a program to calculate and visualise the Mandelbrot fractal. Part 3 extends these ideas. It reveals the related Julia fractals, creates 3-dimensional landscapes and shows how even more interesting images can be made using mathematical filters. The fractal image on the cover of this book is created using only the ideas and code developed in this book.



Fundamentals of Artificial Neural Networks

Fundamentals of Artificial Neural Networks Author Mohamad H. Hassoun
ISBN-10 026208239X
Release 1995
Pages 511
Download Link Click Here

Fundamentals of Building Energy Dynamics assesses how and why buildings use energy, and how energy use and peak demand can be reduced. It provides a basis for integrating energy efficiency and solar approaches in ways that will allow building owners and designers to balance the need to minimize initial costs, operating costs, and life-cycle costs with need to maintain reliable building operations and enhance environmental quality both inside and outside the building. Chapters trace the development of building energy systems and analyze the demand side of solar applications as a means for determining what portion of a building's energy requirements can potentially be met by solar energy.Following the introduction, the book provides an overview of energy use patterns in the aggregate U.S. building population. Chapter 3 surveys work on the energy flows in an individual building and shows how these flows interact to influence overall energy use. Chapter 4 presents the analytical methods, techniques, and tools developed to calculate and analyze energy use in buildings, while chapter 5 provides an extensive survey of the energy conservation and management strategies developed in the post-energy crisis period.The approach taken is a commonsensical one, starting with the proposition that the purpose of buildings is to house human activities, and that conservation measures that negatively affect such activities are based on false economies. The goal is to determine rational strategies for the design of new buildings, and the retrofit of existing buildings to bring them up to modern standards of energy use. The energy flows examined are both large scale (heating systems) and small scale (choices among appliances).Solar Heat Technologies: Fundamentals and Applications, Volume 4



An Introduction to Neural Networks

An Introduction to Neural Networks Author Kevin Gurney
ISBN-10 9780203451519
Release 2003-12-16
Pages 234
Download Link Click Here

Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.



An Introduction to Neural Networks

An Introduction to Neural Networks Author James A. Anderson
ISBN-10 0262510812
Release 1995
Pages 650
Download Link Click Here

An Introduction to Neural Networks falls into a new ecological niche for texts. Based on notes that have been class-tested for more than a decade, it is aimed at cognitive science and neuroscience students who need to understand brain function in terms of computational modeling, and at engineers who want to go beyond formal algorithms to applications and computing strategies. It is the only current text to approach networks from a broad neuroscience and cognitive science perspective, with an emphasis on the biology and psychology behind the assumptions of the models, as well as on what the models might be used for. It describes the mathematical and computational tools needed and provides an account of the author's own ideas. Students learn how to teach arithmetic to a neural network and get a short course on linear associative memory and adaptive maps. They are introduced to the author's brain-state-in-a-box (BSB) model and are provided with some of the neurobiological background necessary for a firm grasp of the general subject. The field now known as neural networks has split in recent years into two major groups, mirrored in the texts that are currently available: the engineers who are primarily interested in practical applications of the new adaptive, parallel computing technology, and the cognitive scientists and neuroscientists who are interested in scientific applications. As the gap between these two groups widens, Anderson notes that the academics have tended to drift off into irrelevant, often excessively abstract research while the engineers have lost contact with the source of ideas in the field. Neuroscience, he points out, provides a rich and valuable source of ideas about data representation and setting up the data representation is the major part of neural network programming. Both cognitive science and neuroscience give insights into how this can be done effectively: cognitive science suggests what to compute and neuroscience suggests how to compute it.



Neural Network Design 2nd Edition

Neural Network Design  2nd Edition Author Martin Hagan
ISBN-10 0971732116
Release 2014-09-01
Pages 800
Download Link Click Here

This book provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems.



Neural Networks for Complete Beginners

Neural Networks for Complete Beginners Author Mark Smart
ISBN-10 1543268722
Release 2017-02-23
Pages 94
Download Link Click Here

This book is an exploration of an artificial neural network. It has been created to suit even the complete beginners to artificial neural networks. The first part of the book is an overview of artificial neural networks so as to help the reader understand what they are. You will also learn the relationship between the neurons which make up the human brain and the artificial neurons. Artificial neural networks embrace the concept of learning which is common in human beings. This book guides you to understand how learning takes place in artificial neural networks. The back-propagation algorithm, which is used for training artificial neural networks, is discussed. The book also guides you through the architecture of an artificial neural network. The various types of artificial neural networks based on their architecture are also discussed. The book guides you on the necessary steps for one to build a neural network. The perception, which is a type of an artificial neural network, is explored, and you will explore how to implement one programmatically. The following topics are discussed in this book: -What is a Neural Network? -Learning in Neural Networks -The Architecture of Neural Networks -Building Neural Networks -The Perceptron



Neural Networks with R

Neural Networks with R Author Giuseppe Ciaburro
ISBN-10 9781788399418
Release 2017-09-27
Pages 270
Download Link Click Here

Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.



Neural Networks and Statistical Learning

Neural Networks and Statistical Learning Author Ke-Lin Du
ISBN-10 9781447155713
Release 2013-12-09
Pages 824
Download Link Click Here

Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.



Recurrent Neural Networks

Recurrent Neural Networks Author Larry Medsker
ISBN-10 1420049178
Release 1999-12-20
Pages 416
Download Link Click Here

With existent uses ranging from motion detection to music synthesis to financial forecasting, recurrent neural networks have generated widespread attention. The tremendous interest in these networks drives Recurrent Neural Networks: Design and Applications, a summary of the design, applications, current research, and challenges of this subfield of artificial neural networks. This overview incorporates every aspect of recurrent neural networks. It outlines the wide variety of complex learning techniques and associated research projects. Each chapter addresses architectures, from fully connected to partially connected, including recurrent multilayer feedforward. It presents problems involving trajectories, control systems, and robotics, as well as RNN use in chaotic systems. The authors also share their expert knowledge of ideas for alternate designs and advances in theoretical aspects. The dynamical behavior of recurrent neural networks is useful for solving problems in science, engineering, and business. This approach will yield huge advances in the coming years. Recurrent Neural Networks illuminates the opportunities and provides you with a broad view of the current events in this rich field.



Neural Network Programming with Python

Neural Network Programming with Python Author Fabio M. Soares
ISBN-10 1784398217
Release 2017-04-28
Pages 430
Download Link Click Here

Build smarter programs with the power of neural networks and the simplicity of PythonAbout This Book* Make your roots stronger in neural networks by this concept-rich yet highly practical guide; from single layer to multiple layers with the help of Python* Through this book, you will develop a strong background in neural networks, regardless of your level of previous knowledge in this subject* You will be able to implement solutions from scratch, so the whole process on foundations of neural network solution design will be paced by youWho This Book Is ForThis book is designed for novices as well as intermediate Python developers who have a statistical background and want to work with neural networks to get better results from complex data. It also contains enough food for thought for those who want to improve their skills in machine learning and deep learning.What You Will Learn* See the latest innovations in the field* Become fluent in Python to develop neural networks solutions capable of solving complex and interesting tasks* Implement neural networks step-by-step* Solve your complex computational problems with the aid of neural networks and Python* The reader will be able to set up his/her neural network with ease, according to the objective he/she wants to apply.* The reader will be able to design time series based models using RNNs in Python.* Will be able to design high level solutions with CNNs in PythonIn DetailIf you wish to solve your complex computational problem efficiently, neural networks come to the rescue. This book will teach you how to ace neural networks and solve your computational problems with Python-right from predicting to self-learning models-with ease. We start off with neural network design, then you'll build a solid foundational knowledge of how a neural network learns from data, and the principles behind it.This book cover various types of neural networks including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but also see a generalization of these networks. With the help of practical examples and real-world use cases, you will learn to implement these neural networks in your applications.