Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Markov Chains

Markov Chains Author J. R. Norris
ISBN-10 0521633966
Release 1998-07-28
Pages 237
Download Link Click Here

In this rigorous account the author studies both discrete-time and continuous-time chains. A distinguishing feature is an introduction to more advanced topics such as martingales and potentials, in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics, and a careful selection of exercises and examples drawn both from theory and practice. This is an ideal text for seminars on random processes or for those that are more oriented towards applications, for advanced undergraduates or graduate students with some background in basic probability theory.



Markov Chains and Stochastic Stability

Markov Chains and Stochastic Stability Author Sean P. Meyn
ISBN-10 9781447132677
Release 2012-12-06
Pages 550
Download Link Click Here

Markov Chains and Stochastic Stability is part of the Communications and Control Engineering Series (CCES) edited by Professors B.W. Dickinson, E.D. Sontag, M. Thoma, A. Fettweis, J.L. Massey and J.W. Modestino. The area of Markov chain theory and application has matured over the past 20 years into something more accessible and complete. It is of increasing interest and importance. This publication deals with the action of Markov chains on general state spaces. It discusses the theories and the use to be gained, concentrating on the areas of engineering, operations research and control theory. Throughout, the theme of stochastic stability and the search for practical methods of verifying such stability, provide a new and powerful technique. This does not only affect applications but also the development of the theory itself. The impact of the theory on specific models is discussed in detail, in order to provide examples as well as to demonstrate the importance of these models. Markov Chains and Stochastic Stability can be used as a textbook on applied Markov chain theory, provided that one concentrates on the main aspects only. It is also of benefit to graduate students with a standard background in countable space stochastic models. Finally, the book can serve as a research resource and active tool for practitioners.



Markov Chains and Mixing Times

Markov Chains and Mixing Times Author David Asher Levin
ISBN-10 0821886274
Release
Pages 371
Download Link Click Here

This book is an introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space. The authors develop the key tools for estimating convergence times, including coupling, strong stationary times, and spectral methods. Whenever possible, probabilistic methods are emphasized. The book includes many examples and provides brief introductions to some central models of statistical mechanics. Also provided are accounts of random walks on networks, including hitting and cover times, and analyses of several methods of shuffling cards. As a prerequisite, the authors assume a modest understanding of probability theory and linear algebra at an undergraduate level. Markov Chains and Mixing Times is meant to bring the excitement of this active area of research to a wide audience.



Understanding Markov Chains

Understanding Markov Chains Author Nicolas Privault
ISBN-10 9789814451512
Release 2013-08-13
Pages 354
Download Link Click Here

This book provides an undergraduate introduction to discrete and continuous-time Markov chains and their applications. A large focus is placed on the first step analysis technique and its applications to average hitting times and ruin probabilities. Classical topics such as recurrence and transience, stationary and limiting distributions, as well as branching processes, are also covered. Two major examples (gambling processes and random walks) are treated in detail from the beginning, before the general theory itself is presented in the subsequent chapters. An introduction to discrete-time martingales and their relation to ruin probabilities and mean exit times is also provided, and the book includes a chapter on spatial Poisson processes with some recent results on moment identities and deviation inequalities for Poisson stochastic integrals. The concepts presented are illustrated by examples and by 72 exercises and their complete solutions.



A First Course in Probability and Markov Chains

A First Course in Probability and Markov Chains Author Giuseppe Modica
ISBN-10 9781118477748
Release 2012-12-10
Pages 352
Download Link Click Here

Provides an introduction to basic structures of probability with a view towards applications in information technology A First Course in Probability and Markov Chains presents an introduction to the basic elements in probability and focuses on two main areas. The first part explores notions and structures in probability, including combinatorics, probability measures, probability distributions, conditional probability, inclusion-exclusion formulas, random variables, dispersion indexes, independent random variables as well as weak and strong laws of large numbers and central limit theorem. In the second part of the book, focus is given to Discrete Time Discrete Markov Chains which is addressed together with an introduction to Poisson processes and Continuous Time Discrete Markov Chains. This book also looks at making use of measure theory notations that unify all the presentation, in particular avoiding the separate treatment of continuous and discrete distributions. A First Course in Probability and Markov Chains: Presents the basic elements of probability. Explores elementary probability with combinatorics, uniform probability, the inclusion-exclusion principle, independence and convergence of random variables. Features applications of Law of Large Numbers. Introduces Bernoulli and Poisson processes as well as discrete and continuous time Markov Chains with discrete states. Includes illustrations and examples throughout, along with solutions to problems featured in this book. The authors present a unified and comprehensive overview of probability and Markov Chains aimed at educating engineers working with probability and statistics as well as advanced undergraduate students in sciences and engineering with a basic background in mathematical analysis and linear algebra.



Markov Chains

Markov Chains Author Pierre Bremaud
ISBN-10 9781475731248
Release 2013-03-09
Pages 444
Download Link Click Here

Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.



Finite Markov Chains and Algorithmic Applications

Finite Markov Chains and Algorithmic Applications Author Olle Häggström
ISBN-10 0521890012
Release 2002-05-30
Pages 114
Download Link Click Here

In this 2002 book, the author develops the necessary background in probability theory and Markov chains then discusses important computing applications.



Statistical Models

Statistical Models Author A. C. Davison
ISBN-10 9781139437417
Release 2003-08-04
Pages
Download Link Click Here

Models and likelihood are the backbone of modern statistics. This 2003 book gives an integrated development of these topics that blends theory and practice, intended for advanced undergraduate and graduate students, researchers and practitioners. Its breadth is unrivaled, with sections on survival analysis, missing data, Markov chains, Markov random fields, point processes, graphical models, simulation and Markov chain Monte Carlo, estimating functions, asymptotic approximations, local likelihood and spline regressions as well as on more standard topics such as likelihood and linear and generalized linear models. Each chapter contains a wide range of problems and exercises. Practicals in the S language designed to build computing and data analysis skills, and a library of data sets to accompany the book, are available over the Web.



Continuous Time Markov Processes

Continuous Time Markov Processes Author Thomas Milton Liggett
ISBN-10 9780821849491
Release 2010
Pages 271
Download Link Click Here

Markov processes are among the most important stochastic processes for both theory and applications. This book develops the general theory of these processes, and applies this theory to various special examples. The initial chapter is devoted to the most important classical example - one dimensional Brownian motion. This, together with a chapter on continuous time Markov chains, provides the motivation for the general setup based on semigroups and generators. Chapters on stochastic calculus and probabilistic potential theory give an introduction to some of the key areas of application of Brownian motion and its relatives. A chapter on interacting particle systems treats a more recently developed class of Markov processes that have as their origin problems in physics and biology. This is a textbook for a graduate course that can follow one that covers basic probabilistic limit theorems and discrete time processes.



Finite Markov Chains

Finite Markov Chains Author John G. Kemeny
ISBN-10 9780387901923
Release 1983-12-01
Pages 244
Download Link Click Here

Finite Markov Chains has been writing in one form or another for most of life. You can find so many inspiration from Finite Markov Chains also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Finite Markov Chains book for free.



Markov Chains

Markov Chains Author Paul A. Gagniuc
ISBN-10 9781119387589
Release 2017-07-11
Pages 256
Download Link Click Here

A fascinating and instructive guide to Markov chains for experienced users and newcomers alike This unique guide to Markov chains approaches the subject along the four convergent lines of mathematics, implementation, simulation, and experimentation. It introduces readers to the art of stochastic modeling, shows how to design computer implementations, and provides extensive worked examples with case studies. Markov Chains: From Theory to Implementation and Experimentation begins with a general introduction to the history of probability theory in which the author uses quantifiable examples to illustrate how probability theory arrived at the concept of discrete-time and the Markov model from experiments involving independent variables. An introduction to simple stochastic matrices and transition probabilities is followed by a simulation of a two-state Markov chain. The notion of steady state is explored in connection with the long-run distribution behavior of the Markov chain. Predictions based on Markov chains with more than two states are examined, followed by a discussion of the notion of absorbing Markov chains. Also covered in detail are topics relating to the average time spent in a state, various chain configurations, and n-state Markov chain simulations used for verifying experiments involving various diagram configurations. • Fascinating historical notes shed light on the key ideas that led to the development of the Markov model and its variants • Various configurations of Markov Chains and their limitations are explored at length • Numerous examples—from basic to complex—are presented in a comparative manner using a variety of color graphics • All algorithms presented can be analyzed in either Visual Basic, Java Script, or PHP • Designed to be useful to professional statisticians as well as readers without extensive knowledge of probability theory Covering both the theory underlying the Markov model and an array of Markov chain implementations, within a common conceptual framework, Markov Chains: From Theory to Implementation and Experimentation is a stimulating introduction to and a valuable reference for those wishing to deepen their understanding of this extremely valuable statistical tool. Paul A. Gagniuc, PhD, is Associate Professor at Polytechnic University of Bucharest, Romania. He obtained his MS and his PhD in genetics at the University of Bucharest. Dr. Gagniuc’s work has been published in numerous high profile scientific journals, ranging from the Public Library of Science to BioMed Central and Nature journals. He is the recipient of several awards for exceptional scientific results and a highly active figure in the review process for different scientific areas.



Discrete Probability Models and Methods

Discrete Probability Models and Methods Author Pierre Brémaud
ISBN-10 9783319434766
Release 2017-02-16
Pages 559
Download Link Click Here

The emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book.



Essentials of Stochastic Processes

Essentials of Stochastic Processes Author Richard Durrett
ISBN-10 9783319456140
Release 2016-11-07
Pages 275
Download Link Click Here

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.



Probability

Probability Author Rick Durrett
ISBN-10 9781139491136
Release 2010-08-30
Pages
Download Link Click Here

This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.



Markov Chains and Mixing Times Second Edition

Markov Chains and Mixing Times  Second Edition Author David A. Levin
ISBN-10 9781470429621
Release 2017-10-31
Pages 447
Download Link Click Here

This book is an introduction to the modern theory of Markov chains, whose goal is to determine the rate of convergence to the stationary distribution, as a function of state space size and geometry. This topic has important connections to combinatorics, statistical physics, and theoretical computer science. Many of the techniques presented originate in these disciplines. The central tools for estimating convergence times, including coupling, strong stationary times, and spectral methods, are developed. The authors discuss many examples, including card shuffling and the Ising model, from statistical mechanics, and present the connection of random walks to electrical networks and apply it to estimate hitting and cover times. The first edition has been used in courses in mathematics and computer science departments of numerous universities. The second edition features three new chapters (on monotone chains, the exclusion process, and stationary times) and also includes smaller additions and corrections throughout. Updated notes at the end of each chapter inform the reader of recent research developments.



An Introduction to the Theory of Large Deviations

An Introduction to the Theory of Large Deviations Author Daniel W. Stroock
ISBN-10 1461385156
Release 1984-08
Pages 208
Download Link Click Here

An Introduction to the Theory of Large Deviations has been writing in one form or another for most of life. You can find so many inspiration from An Introduction to the Theory of Large Deviations also informative, and entertaining. Click DOWNLOAD or Read Online button to get full An Introduction to the Theory of Large Deviations book for free.



Introduction to Stochastic Processes Second Edition

Introduction to Stochastic Processes  Second Edition Author Gregory F. Lawler
ISBN-10 158488651X
Release 2006-05-16
Pages 248
Download Link Click Here

Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.