Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Mastering ROS for Robotics Programming Second Edition

Mastering ROS for Robotics Programming  Second Edition Author Lentin Joseph
ISBN-10 9781788474528
Release 2018-02-26
Pages 580
Download Link Click Here

Discover best practices and troubleshooting solutions when working on ROS Key Features Develop complex robotic applications using ROS to interface robot manipulators and mobile robots Gain insight into autonomous navigation in mobile robots and motion planning in robot manipulators Discover best practices and troubleshooting solutions Book Description In this day and age, robotics has been gaining a lot of traction in various industries where consistency and perfection matter. Automation is achieved via robotic applications and various platforms that support robotics. The Robot Operating System (ROS) is a modular software platform to develop generic robotic applications. This book focuses on the most stable release of ROS (Kinetic Kame), discusses advanced concepts, and effectively teaches you programming using ROS. We begin with aninformative overview of the ROS framework, which will give you a clear idea of how ROS works. During the course of this book, you’ll learn to build models of complex robots, and simulate and interface the robot using the ROS MoveIt! motion planning library and ROS navigation stacks. Learn to leverage several ROS packages to embrace your robot models. After covering robot manipulation and navigation, you’ll get to grips with the interfacing I/O boards, sensors, and actuators of ROS. Vision sensors are a key component of robots, and an entire chapter is dedicated to the vision sensor and image elaboration, its interface in ROS and programming. You’ll also understand the hardware interface and simulation of complex robots to ROS and ROS Industrial. At the end of this book, you’ll discover the best practices to follow when programming using ROS. What you will learn Create a robot model with a seven-DOF robotic arm and a differential wheeled mobile robot Work with Gazebo and V-REP robotic simulator Implement autonomous navigation in differential drive robots using SLAM and AMCL packages Explore the ROS Pluginlib, ROS nodelets, and Gazebo plugins Interface I/O boards such as Arduino, robot sensors, and high-end actuators Simulate and motion plan an ABB and universal arm using ROS Industrial Explore the latest version of the ROS framework Work with the motion planning of a seven-DOF arm using MoveIt! Who this book is for If you are a robotics enthusiast or researcher who want to learn more about building robot applications using ROS, this book is for you. In order to learn from this book, you should have a basic knowledge of ROS, GNU/Linux, and C++ programming concepts. The book is also excellent for programmers who want to explore the advanced features of ROS.



Mastering ROS for Robotics Programming

Mastering ROS for Robotics Programming Author Lentin Joseph
ISBN-10 9781785282997
Release 2015-12-21
Pages 480
Download Link Click Here

Design, build and simulate complex robots using Robot Operating System and master its out-of-the-box functionalities About This Book Develop complex robotic applications using ROS for interfacing robot manipulators and mobile robots with the help of high end robotic sensors Gain insights into autonomous navigation in mobile robot and motion planning in robot manipulators Discover the best practices and troubleshooting solutions everyone needs when working on ROS Who This Book Is For If you are a robotics enthusiast or researcher who wants to learn more about building robot applications using ROS, this book is for you. In order to learn from this book, you should have a basic knowledge of ROS, GNU/Linux, and C++ programming concepts. The book will also be good for programmers who want to explore the advanced features of ROS. What You Will Learn Create a robot model of a Seven-DOF robotic arm and a differential wheeled mobile robot Work with motion planning of a Seven-DOF arm using MoveIt! Implement autonomous navigation in differential drive robots using SLAM and AMCL packages in ROS Dig deep into the ROS Pluginlib, ROS nodelets, and Gazebo plugins Interface I/O boards such as Arduino, Robot sensors, and High end actuators with ROS Simulation and motion planning of ABB and Universal arm using ROS Industrial Explore the ROS framework using its latest version In Detail The area of robotics is gaining huge momentum among corporate people, researchers, hobbyists, and students. The major challenge in robotics is its controlling software. The Robot Operating System (ROS) is a modular software platform to develop generic robotic applications. This book discusses the advanced concepts in robotics and how to program using ROS. It starts with deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. After discussing robot manipulation and navigation in robots, you will get to grips with the interfacing I/O boards, sensors, and actuators of ROS. One of the essential ingredients of robots are vision sensors, and an entire chapter is dedicated to the vision sensor, its interfacing in ROS, and its programming. You will discuss the hardware interfacing and simulation of complex robot to ROS and ROS Industrial (Package used for interfacing industrial robots). Finally, you will get to know the best practices to follow when programming using ROS. Style and approach This is a simplified guide to help you learn and master advanced topics in ROS using hands-on examples.



ROS Robotics Projects

ROS Robotics Projects Author Lentin Joseph
ISBN-10 9781783554720
Release 2017-03-31
Pages 452
Download Link Click Here

Build a variety of awesome robots that can see, sense, move, and do a lot more using the powerful Robot Operating System About This Book Create and program cool robotic projects using powerful ROS libraries Work through concrete examples that will help you build your own robotic systems of varying complexity levels This book provides relevant and fun-filled examples so you can make your own robots that can run and work Who This Book Is For This book is for robotic enthusiasts and researchers who would like to build robot applications using ROS. If you are looking to explore advanced ROS features in your projects, then this book is for you. Basic knowledge of ROS, GNU/Linux, and programming concepts is assumed. What You Will Learn Create your own self-driving car using ROS Build an intelligent robotic application using deep learning and ROS Master 3D object recognition Control a robot using virtual reality and ROS Build your own AI chatter-bot using ROS Get to know all about the autonomous navigation of robots using ROS Understand face detection and tracking using ROS Get to grips with teleoperating robots using hand gestures Build ROS-based applications using Matlab and Android Build interactive applications using TurtleBot In Detail Robot Operating System is one of the most widely used software frameworks for robotic research and for companies to model, simulate, and prototype robots. Applying your knowledge of ROS to actual robotics is much more difficult than people realize, but this title will give you what you need to create your own robotics in no time! This book is packed with over 14 ROS robotics projects that can be prototyped without requiring a lot of hardware. The book starts with an introduction of ROS and its installation procedure. After discussing the basics, you'll be taken through great projects, such as building a self-driving car, an autonomous mobile robot, and image recognition using deep learning and ROS. You can find ROS robotics applications for beginner, intermediate, and expert levels inside! This book will be the perfect companion for a robotics enthusiast who really wants to do something big in the field. Style and approach This book is packed with fun-filled, end-to-end projects on mobile, armed, and flying robots, and describes the ROS implementation and execution of these models.



Learning Robotics using Python

Learning Robotics using Python Author Lentin Joseph
ISBN-10 9781788629973
Release 2018-06-27
Pages 280
Download Link Click Here

Design, simulate, and program interactive robots Key Features Design, simulate, build, and program an interactive autonomous mobile robot Leverage the power of ROS, Gazebo, and Python to enhance your robotic skills A hands-on guide to creating an autonomous mobile robot with the help of ROS and Python Book Description Robot Operating System (ROS) is one of the most popular robotics software frameworks in research and industry. It has various features for implement different capabilities in a robot without implementing them from scratch. This book starts by showing you the fundamentals of ROS so you understand the basics of differential robots. Then, you'll learn about robot modeling and how to design and simulate it using ROS. Moving on, we'll design robot hardware and interfacing actuators. Then, you'll learn to configure and program depth sensors and LIDARs using ROS. Finally, you'll create a GUI for your robot using the Qt framework. By the end of this tutorial, you'll have a clear idea of how to integrate and assemble everything into a robot and how to bundle the software package. What you will learn Design a differential robot from scratch Model a differential robot using ROS and URDF Simulate a differential robot using ROS and Gazebo Design robot hardware electronics Interface robot actuators with embedded boards Explore the interfacing of different 3D depth cameras in ROS Implement autonomous navigation in ChefBot Create a GUI for robot control Who this book is for This book is for those who are conducting research in mobile robotics and autonomous navigation. As well as the robotics research domain, this book is also for the robot hobbyist community. You’re expected to have a basic understanding of Linux commands and Python.



Learning ROS for Robotics Programming

Learning ROS for Robotics Programming Author Aaron Martinez
ISBN-10 9781782161455
Release 2013-09-25
Pages 332
Download Link Click Here

The book will take an easy-to-follow and engaging tutorial approach, providing a practical and comprehensive way to learn ROS.If you are a robotic enthusiast who wants to learn how to build and program your own robots in an easy-to-develop, maintainable and shareable way, "Learning ROS for Robotics Programming" is for you. In order to make the most of the book, you should have some C++ programming background, knowledge of GNU/Linux systems, and computer science in general. No previous background on ROS is required, since this book provides all the skills required. It is also advisable to have some background on version control systems, like svn or git, which are often used to share the code by the community.



Effective Robotics Programming with ROS

Effective Robotics Programming with ROS Author Anil Mahtani
ISBN-10 9781786461377
Release 2016-12-27
Pages 468
Download Link Click Here

Find out everything you need to know to build powerful robots with the most up-to-date ROS About This Book This comprehensive, yet easy-to-follow guide will help you find your way through the ROS framework Successfully design and simulate your 3D robot model and use powerful robotics algorithms and tools to program and set up your robots with an unparalleled experience by using the exciting new features from Robot Kinetic Use the latest version of gazebo simulator, OpenCV 3.0, and C++11 standard for your own algorithms Who This Book Is For This book is suitable for an ROS beginner as well as an experienced ROS roboticist or ROS user or developer who is curious to learn ROS Kinetic and its features to make an autonomous Robot. The book is also suitable for those who want to integrate sensors and embedded systems with other software and tools using ROS as a framework. What You Will Learn Understand the concepts of ROS, the command-line tools, visualization GUIs, and how to debug ROS Connect robot sensors and actuators to ROS Obtain and analyze data from cameras and 3D sensors Use Gazebo for robot/sensor and environment simulation Design a robot and see how to make it map the environment, navigate autonomously, and manipulate objects in the environment using MoveIt! Add vision capabilities to the robot using OpenCV 3.0 Add 3D perception capabilities to the robot using the latest version of PCL In Detail Building and programming a robot can be cumbersome and time-consuming, but not when you have the right collection of tools, libraries, and more importantly expert collaboration. ROS enables collaborative software development and offers an unmatched simulated environment that simplifies the entire robot building process. This book is packed with hands-on examples that will help you program your robot and give you complete solutions using open source ROS libraries and tools. It also shows you how to use virtual machines and Docker containers to simplify the installation of Ubuntu and the ROS framework, so you can start working in an isolated and control environment without changing your regular computer setup. It starts with the installation and basic concepts, then continues with more complex modules available in ROS such as sensors and actuators integration (drivers), navigation and mapping (so you can create an autonomous mobile robot), manipulation, Computer Vision, perception in 3D with PCL, and more. By the end of the book, you'll be able to leverage all the ROS Kinetic features to build a fully fledged robot for all your needs. Style and approach This book is packed with hands-on examples that will help you program your robot and give you complete solutions using ROS open source libraries and tools. All the robotics concepts and modules are explained and multiple examples are provided so that you can understand them easily.



Programming Robots with ROS

Programming Robots with ROS Author Morgan Quigley
ISBN-10 9781449325510
Release 2015-11-16
Pages 448
Download Link Click Here

Want to develop novel robot applications, but don’t know how to write a mapping or object-recognition system? You’re not alone, but you’re certainly not without help. By combining real-world examples with valuable knowledge from the Robot Operating System (ROS) community, this practical book provides a set of motivating recipes for solving specific robotics use cases. Ideal for enthusiasts, from students in robotics clubs to professional robotics scientists and engineers, each recipe describes a complete solution using ROS open source libraries and tools. You’ll learn how to complete tasks described in the recipes, as well as how to configure and recombine components for other tasks. If you’re familiar with Python, you’re ready to go. Learn fundamentals, including key ROS concepts, tools, and patterns Program robots that perform an increasingly complex set of behaviors, using the powerful packages in ROS See how to easily add perception and navigation abilities to your robots Integrate your own sensors, actuators, software libraries, and even a whole robot into the ROS ecosystem Learn tips and tricks for using ROS tools and community resources, debugging robot behavior, and using C++ in ROS



ROS Robotics By Example

ROS Robotics By Example Author Carol Fairchild
ISBN-10 9781788474726
Release 2017-11-30
Pages 484
Download Link Click Here

Learning how to build and program your own robots with the most popular open source robotics programming framework About This Book Get to know the fundamentals of ROS and apply its concepts to real examples Learn how to write robotics applications without getting bogged down in hardware problems Learn to implement best practices in ROS development Who This Book Is For This book is for robotic enthusiasts, researchers and professional robotics engineers who would like to build robot applications using ROS. It gives the robotics beginner and the ROS newbie an immensely practical introduction to robot building and robotics application coding. Basic knowledge of GNU/Linux and the ability to write simple applications is assumed, but no robotics knowledge, practical or theoretical, is needed. What You Will Learn Control a robot without requiring a PhD in robotics Simulate and control a robot arm Control a flying robot Send your robot on an independent mission Learning how to control your own robots with external devices Program applications running on your robot Extend ROS itself Extend ROS with the MATLAB Robotics System Toolbox In Detail ROS is a robust robotics framework that works regardless of hardware architecture or hardware origin. It standardizes most layers of robotics functionality from device drivers to process control and message passing to software package management. But apart from just plain functionality, ROS is a great platform to learn about robotics itself and to simulate, as well as actually build, your first robots. This does not mean that ROS is a platform for students and other beginners; on the contrary, ROS is used all over the robotics industry to implement flying, walking and diving robots, yet implementation is always straightforward, and never dependent on the hardware itself. ROS Robotics has been the standard introduction to ROS for potential professionals and hobbyists alike since the original edition came out; the second edition adds a gradual introduction to all the goodness available with the Kinetic Kame release. By providing you with step-by-step examples including manipulator arms and flying robots, the authors introduce you to the new features. The book is intensely practical, with space given to theory only when absolutely necessary. By the end of this book, you will have hands-on experience on controlling robots with the best possible framework. Style and approach ROS Robotics By Example, Second Edition gives the robotics beginner as well as the ROS newbie an immensely practical introduction to robot building and robotics application coding. ROS translates as "robot operating system"; you will learn how to control a robot via devices and configuration files, but you will also learn how to write robot applications on the foundation of this operating system.



A Systematic Approach to Learning Robot Programming with ROS

A Systematic Approach to Learning Robot Programming with ROS Author Wyatt Newman
ISBN-10 9781498777872
Release 2017-09-15
Pages 502
Download Link Click Here

A Systematic Approach to Learning Robot Programming with ROS provides a comprehensive, introduction to the essential components of ROS through detailed explanations of simple code examples along with the corresponding theory of operation. The book explores the organization of ROS, how to understand ROS packages, how to use ROS tools, how to incorporate existing ROS packages into new applications, and how to develop new packages for robotics and automation. It also facilitates continuing education by preparing the reader to better understand the existing on-line documentation. The book is organized into six parts. It begins with an introduction to ROS foundations, including writing ROS nodes and ROS tools. Messages, Classes, and Servers are also covered. The second part of the book features simulation and visualization with ROS, including coordinate transforms. The next part of the book discusses perceptual processing in ROS. It includes coverage of using cameras in ROS, depth imaging and point clouds, and point cloud processing. Mobile robot control and navigation in ROS is featured in the fourth part of the book The fifth section of the book contains coverage of robot arms in ROS. This section explores robot arm kinematics, arm motion planning, arm control with the Baxter Simulator, and an object-grabber package. The last part of the book focuses on system integration and higher-level control, including perception-based and mobile manipulation. This accessible text includes examples throughout and C++ code examples are also provided at https://github.com/wsnewman/learning_ros



Robot Operating System ROS

Robot Operating System  ROS Author Anis Koubaa
ISBN-10 9783319915906
Release 2018-07-05
Pages 605
Download Link Click Here

Building on the successful first and second volumes, this book is the third volume of the Springer book on the Robot Operating System (ROS): The Complete Reference. The Robot Operating System is evolving from year to year with a wealth of new contributed packages and enhanced capabilities. Further, the ROS is being integrated into various robots and systems and is becoming an embedded technology in emerging robotics platforms. The objective of this third volume is to provide readers with additional and comprehensive coverage of the ROS and an overview of the latest achievements, trends and packages developed with and for it. Combining tutorials, case studies, and research papers, the book consists of sixteen chapters and is divided into five parts. Part 1 presents multi-robot systems with the ROS. In Part 2, four chapters deal with the development of unmanned aerial systems and their applications. In turn, Part 3 highlights recent work related to navigation, motion planning and control. Part 4 discusses recently contributed ROS packages for security, ROS2, GPU usage, and real-time processing. Lastly, Part 5 deals with new interfaces allowing users to interact with robots. Taken together, the three volumes of this book offer a valuable reference guide for ROS users, researchers, learners and developers alike. Its breadth of coverage makes it a unique resource.



Robot Operating System ROS for Absolute Beginners

Robot Operating System  ROS  for Absolute Beginners Author Lentin Joseph
ISBN-10 9781484234051
Release 2018-05-24
Pages 282
Download Link Click Here

Learn how to get started with robotics programming using Robot Operation System (ROS). Targeted for absolute beginners in ROS, Linux, and Python, this short guide shows you how to build your own robotics projects. ROS is an open-source and flexible framework for writing robotics software. With a hands-on approach and sample projects, Robot Operating System for Absolute Beginners will enable you to begin your first robot project. You will learn the basic concepts of working with ROS and begin coding with ROS APIs in both C++ and Python. What You’ll Learn Install ROS Review fundamental ROS concepts Work with frequently used commands in ROS Build a mobile robot from scratch using ROS Who This Book Is For Absolute beginners with little to no programming experience looking to learn robotics programming.



A Gentle Introduction to ROS

A Gentle Introduction to ROS Author Jason M. O'Kane
ISBN-10 1492143235
Release 2013
Pages 151
Download Link Click Here

ROS (Robot Operating System) is rapidly becoming a de facto standard for writing interoperable and reusable robot software. This book supplements ROS's own documentation, explaining how to interact with existing ROS systems and how to create new ROS programs using C++, with special attention to common mistakes and misunderstandings. The intended audience includes new or potential ROS users.



Wheeled Mobile Robotics

Wheeled Mobile Robotics Author Gregor Klancar
ISBN-10 9780128042380
Release 2017-02-02
Pages 502
Download Link Click Here

Wheeled Mobile Robotics: From Fundamentals Towards Autonomous Systemscovers the main topics from the wide area of mobile robotics, explaining all applied theory and application. The book gives the reader a good foundation, enabling them to continue to more advanced topics. Several examples are included for better understanding, many of them accompanied by short MATLAB® script code making it easy to reuse in practical work. The book includes several examples of discussed methods and projects for wheeled mobile robots and some advanced methods for their control and localization. It is an ideal resource for those seeking an understanding of robotics, mechanics, and control, and for engineers and researchers in industrial and other specialized research institutions in the field of wheeled mobile robotics. Beginners with basic math knowledge will benefit from the examples, and engineers with an understanding of basic system theory and control will find it easy to follow the more demanding fundamental parts and advanced methods explained. Offers comprehensive coverage of the essentials of the field that are suitable for both academics and practitioners Includes several examples of the application of algorithms in simulations and real laboratory projects Presents foundation in mobile robotics theory before continuing with more advanced topics Self-sufficient to beginner readers, covering all important topics in the mobile robotics field Contains specific topics on modeling, control, sensing, path planning, localization, design architectures, and multi-agent systems



Introduction to Autonomous Mobile Robots

Introduction to Autonomous Mobile Robots Author Roland Siegwart
ISBN-10 9780262015356
Release 2011-02-18
Pages 453
Download Link Click Here

Machine generated contents note: |g 1. |t Introduction -- |g 1.1. |t Introduction -- |g 1.2. |t An Overview of the Book -- |g 2. |t Locomotion -- |g 2.1. |t Introduction -- |g 2.1.1. |t Key issues for locomotion -- |g 2.2. |t Legged Mobile Robots -- |g 2.2.1. |t Leg configurations and stability -- |g 2.2.2. |t Consideration of dynamics -- |g 2.2.3. |t Examples of legged robot locomotion -- |g 2.3. |t Wheeled Mobile Robots -- |g 2.3.1. |t Wheeled locomotion: The design space -- |g 2.3.2. |t Wheeled locomotion: Case studies -- |g 2.4. |t Aerial Mobile Robots -- |g 2.4.1. |t Introduction -- |g 2.4.2. |t Aircraft configurations -- |g 2.4.3. |t State of the art in autonomous VTOL -- |g 2.5. |t Problems -- |g 3. |t Mobile Robot Kinematics -- |g 3.1. |t Introduction -- |g 3.2. |t Kinematic Models and Constraints -- |g 3.2.1. |t Representing robot position -- |g 3.2.2. |t Forward kinematic models -- |g 3.2.3. |t Wheel kinematic constraints -- |g 3.2.4. |t Robot kinematic constraints -- |g 3.g 3.3. |t Mobile Robot Maneuverability -- |g 3.3.1. |t Degree of mobility -- |g 3.3.2. |t Degree of steerability -- |g 3.3.3. |t Robot maneuverability -- |g 3.4. |t Mobile Robot Workspace -- |g 3.4.1. |t Degrees of freedom -- |g 3.4.2. |t Holonomic robots -- |g 3.4.3. |t Path and trajectory considerations -- |g 3.5. |t Beyond Basic Kinematics -- |g 3.6. |t Motion Control (Kinematic Control) -- |g 3.6.1. |t Open loop control (trajectory-following) -- |g 3.6.2. |t Feedback control -- |g 3.7. |t Problems -- |g 4. |t Perception -- |g 4.1. |t Sensors for Mobile Robots -- |g 4.1.1. |t Sensor classification -- |g 4.1.2. |t Characterizing sensor performance -- |g 4.1.3. |t Representing uncertainty -- |g 4.1.4. |t Wheel/motor sensors -- |g 4.1.5. |t Heading sensors -- |g 4.1.6. |t Accelerometers -- |g 4.1.7. |t Inertial measurement unit (IMU) -- |g 4.1.8. |t Ground beacons -- |g 4.1.9. |t Active ranging -- |g 4.1.10. |t Motion/speed sensors -- |g 4.1.11. |t Vision sensors -- |g 4.2. |t Fundameng 4.2.5. |t Structure from stereo -- |g 4.2.6. |t Structure from motion -- |g 4.2.7. |t Motion and optical flow -- |g 4.2.8. |t Color tracking -- |g 4.3. |t Fundamentals of Image Processing -- |g 4.3.1. |t Image filtering -- |g 4.3.2. |t Edge detection -- |g 4.3.3. |t Computing image similarity -- |g 4.4. |t Feature Extraction -- |g 4.5. |t Image Feature Extraction: Interest Point Detectors -- |g 4.5.1. |t Introduction -- |g 4.5.2. |t Properties of the ideal feature detector -- |g 4.5.3. |t Corner detectors -- |g 4.5.4. |t Invariance to photometric and geometric changes -- |g 4.5.5. |t Blob detectors -- |g 4.6. |t Place Recognition -- |g 4.6.1. |t Introduction -- |g 4.6.2. |t From bag of features to visual words -- |g 4.6.3. |t Efficient location recognition by using an inverted file -- |g 4.6.4. |t Geometric verification for robust place recognition -- |g 4.6.5. |t Applications -- |g 4.6.6. |t Other image representations for place recognition -- |g 4.7. |t Feature Extraction Based ong 4.7.3. |t Range histogram features -- |g 4.7.4. |t Extracting other geometric features -- |g 4.8. |t Problems -- |g 5. |t Mobile Robot Localization -- |g 5.1. |t Introduction -- |g 5.2. |t The Challenge of Localization: Noise and Aliasing -- |g 5.2.1. |t Sensor noise -- |g 5.2.2. |t Sensor aliasing -- |g 5.2.3. |t Effector noise -- |g 5.2.4. |t An error model for odometric position estimation -- |g 5.3. |t To Localize or Not to Localize: Localization-Based Navigation Versus Programmed Solutions -- |g 5.4. |t Belief Representation -- |g 5.4.1. |t Single-hypothesis belief -- |g 5.4.2. |t Multiple-hypothesis belief -- |g 5.5. |t Map Representation -- |g 5.5.1. |t Continuous representations -- |g 5.5.2. |t Decomposition strategies -- |g 5.5.3. |t State of the art: Current challenges in map representation -- |g 5.6. |t Probabilistic Map-Based Localization -- |g 5.6.1. |t Introduction -- |g 5.6.2. |t The robot localization problem -- |g 5.6.3. |t Basic concepts of probability theory -- |gg 5.6.6. |t Classification of localization problems -- |g 5.6.7. |t Markov localization -- |g 5.6.8. |t Kalman filter localization -- |g 5.7. |t Other Examples of Localization Systems -- |g 5.7.1. |t Landmark-based navigation -- |g 5.7.2. |t Globally unique localization -- |g 5.7.3. |t Positioning beacon systems -- |g 5.7.4. |t Route-based localization -- |g 5.8. |t Autonomous Map Building -- |g 5.8.1. |t Introduction -- |g 5.8.2. |t SLAM: The simultaneous localization and mapping problem -- |g 5.8.3. |t Mathematical definition of SLAM -- |g 5.8.4. |t Extended Kalman Filter (EKF) SLAM -- |g 5.8.5. |t Visual SLAM with a single camera -- |g 5.8.6. |t Discussion on EKF SLAM -- |g 5.8.7. |t Graph-based SLAM -- |g 5.8.8. |t Particle filter SLAM -- |g 5.8.9. |t Open challenges in SLAM -- |g 5.8.10. |t Open source SLAM software and other resources -- |g 5.9. |t Problems -- |g 6. |t Planning and Navigation -- |g 6.1. |t Introduction -- |g 6.2. |t Competences for Navigation: Planning and Reactig 6.4. |t Obstacle avoidance -- |g 6.4.1. |t Bug algorithm -- |g 6.4.2. |t Vector field histogram -- |g 6.4.3. |t The bubble band technique -- |g 6.4.4. |t Curvature velocity techniques -- |g 6.4.5. |t Dynamic window approaches -- |g 6.4.6. |t The Schlegel approach to obstacle avoidance -- |g 6.4.7. |t Nearness diagram -- |g 6.4.8. |t Gradient method -- |g 6.4.9. |t Adding dynamic constraints -- |g 6.4.10. |t Other approaches -- |g 6.4.11. |t Overview -- |g 6.5. |t Navigation Architectures -- |g 6.5.1. |t Modularity for code reuse and sharing -- |g 6.5.2. |t Control localization -- |g 6.5.3. |t Techniques for decomposition -- |g 6.5.4. |t Case studies: tiered robot architectures -- |g 6.6. |t Problems -- |t Bibliography -- |t Books -- |t Papers -- |t Referenced Webpages.



Mastering BeagleBone Robotics

Mastering BeagleBone Robotics Author Richard Grimmett
ISBN-10 9781783988914
Release 2014-12-22
Pages 234
Download Link Click Here

If you want a simple guide to building complex robots, then this book is for you. You'll need some programming knowledge and experience working with mechanical systems.



Building Smart LEGO MINDSTORMS EV3 Robots

Building Smart LEGO MINDSTORMS EV3 Robots Author Kyle Markland
ISBN-10 9781788475693
Release 2018-04-04
Pages 258
Download Link Click Here

Build and program smart robots with the EV3. Key Features Efficiently build smart robots with the LEGO MINDSTORMS EV3 Discover building techniques and programming concepts that are used by engineers to prototype robots in the real world This project-based guide will teach you how to build exciting projects such as the objecta-tracking tank, ultimate all-terrain vehicle, remote control race car, or even a GPS-navigating autonomous vehicle Book Description Smart robots are an ever-increasing part of our daily lives. With LEGO MINDSTORMS EV3, you can now prototype your very own small-scale smart robot that uses specialized programming and hardware to complete a mission. EV3 is a robotics platform for enthusiasts of all ages and experience levels that makes prototyping robots accessible to all. This book will walk you through six different projects that range from intermediate to advanced level. The projects will show you building and programming techniques that are used by engineers in the real world, which will help you build your own smart robot. You'll see how to make the most of the EV3 robotics platform and build some awesome smart robots. The book starts by introducing some real-world examples of smart robots. Then, we'll walk you through six different projects and explain the features that allow these robots to make intelligent decisions. The book will guide you as you build your own object-tracking tank, a box-climbing robot, an interactive robotic shark, a quirky bipedal robot, a speedy remote control race car, and a GPS-navigating robot. By the end of this book, you'll have the skills necessary to build and program your own smart robots with EV3. What you will learn Understand the characteristics that make a robot smart Grasp proportional beacon following and use proximity sensors to track an object Discover how mechanisms such as rack-and-pinion and the worm gear work Program a custom GUI to make a robot more user friendly Make a fun and quirky interactive robot that has its own personality Get to know the principles of remote control and programming car-style steering Understand some of the mechanisms that enable a car to drive Navigate to a destination with a GPS receiver Who this book is for This book is for hobbyists, robotic engineers, and programmers who understand the basics of the EV3 programming language and are familiar with building with LEGO Technic and want to try some advanced projects. If you want to learn some new engineering techniques and take your experience with the EV3 to the next level, then this book is for you.



Beginning Robotics Programming in Java with LEGO Mindstorms

Beginning Robotics Programming in Java with LEGO Mindstorms Author Wei Lu
ISBN-10 9781484220054
Release 2016-11-15
Pages 234
Download Link Click Here

Discover the difference between making a robot move and making a robot think. Using Mindstorms EV3 and LeJOS—an open source project for Java Mindstorms projects—you’ll learn how to create Artificial Intelligence (AI) for your bot. Your robot will learn how to problem solve, how to plan, and how to communicate. Along the way, you’ll learn about classical AI algorithms for teaching hardware how to think; algorithms that you can then apply to your own robotic inspirations. If you’ve ever wanted to learn about robotic intelligence in a practical, playful way, Beginning Robotics Programming in Java with LEGO Mindstorms is for you. What you’ll learn: Build your first LEGO EV3 robot step-by-step Install LeJOS and its firmware on Lego EV3 Create and upload your first Java program into Lego EV3 Work with Java programming for motors Understand robotics behavior programming with sensors Review common AI algorithms, such as DFS, BFS, and Dijkstra’s Algorithm Who this book is for: Students, teachers, and makers with basic Java programming experience who want to learn how to apply Artificial Intelligence to a practical robotic system.