Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Materials Characterization

Materials Characterization Author Naryanaswami (Mohan) Ranganathan
ISBN-10 9789814613071
Release 2016-01-05
Pages 334
Download Link Click Here

This book, which is a result of a coordinated effort by 22 researchers from five different countries, addresses the methods of determining the local and global mechanical properties of a variety of materials: metals, plastics, rubber, and ceramics. The first chapter treats nanoindentation techniques comprehensively. Chapter 2 concerns polymer surface properties using nanoindentation techniques. Chapter 3 deals with the wear properties of dental composites. Chapter 4 compares the global and local properties of a lead-free solder. Chapter 5 discusses the methods of determining plastic zones at the crack tip. Fatigue resistance of a synthetic polymer under different loading conditions is dealt with in Chapter 6. Chapter 7 is a review of the methods used to measure fatigue crack growth resistance. Chapter 8 treats bulk and surface properties of coated materials, and the final chapter presents a method for determining elastic constants using a resonance technique. All in all, its depth of coverage makes it a must-have for research scholars, graduate students, and teachers.



Materials Characterization Techniques

Materials Characterization Techniques Author Sam Zhang
ISBN-10 9781420042955
Release 2008-12-22
Pages 344
Download Link Click Here

Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today—whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material’s structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researchers apply basic principles of chemistry, physics, and biology to address its scientific fundamentals, as well as how it is processed and engineered for use. Emphasizing practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used, advanced surface and structural characterization techniques for quality assurance, contamination control, and process improvement. This useful volume: Explores scientific processes to characterize materials using modern technologies Provides analysis of materials’ performance under specific use conditions Focuses on the interrelationships and interdependence between processing, structure, properties, and performance Details the sophisticated instruments involved in an interdisciplinary approach to understanding the wide range of mutually interacting processes, mechanisms, and materials Covers electron, X-ray-photoelectron, and UV spectroscopy; scanning-electron, atomic-force, transmission-electron, and laser-confocal-scanning-florescent microscopy, and gel electrophoresis chromatography Presents the fundamentals of vacuum, as well as X-ray diffraction principles Explaining appropriate uses and related technical requirements for characterization techniques, the authors omit lengthy and often intimidating derivations and formulations. Instead, they emphasize useful basic principles and applications of modern technologies used to characterize engineering materials, helping readers grasp micro- and nanoscale properties. This text will serve as a valuable guide for scientists and engineers involved in characterization and also as a powerful introduction to the field for advanced undergraduate and graduate students.



Nondestructive Materials Characterization

Nondestructive Materials Characterization Author Norbert G. H. Meyendorf
ISBN-10 9783662089880
Release 2013-11-21
Pages 418
Download Link Click Here

With an emphasis on aircraft materials, this book describes techniques for the material characterization to detect and quantify degradation processes such as corrosion and fatigue. It introduces readers to these techniques based on x-ray, ultrasonic, optical and thermal principles and demonstrates the potential of the techniques for a wide variety of applications concerning aircraft materials, especially aluminum and titanium alloys. The advantages and disadvantages of various techniques are evaluated.



Materials Characterization Using Nondestructive Evaluation NDE Methods

Materials Characterization Using Nondestructive Evaluation  NDE  Methods Author Gerhard Huebschen
ISBN-10 9780081000571
Release 2016-03-23
Pages 320
Download Link Click Here

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques Reviews the determination of microstructural and mechanical properties Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials



X ray Characterization of Materials

X ray Characterization of Materials Author Eric Lifshin
ISBN-10 9783527613755
Release 2008-07-11
Pages 277
Download Link Click Here

Linking of materials properties with microstructures is a fundamental theme in materials science, for which a detailed knowledge of the modern characterization techniques is essential. Since modern materials such as high-temperature alloys, engineering thermoplastics and multilayer semiconductor films have many elemental constituents distributed in more than one phase, characterization is essential to the systematic development of such new materials and understanding how they behave in practical applications. X-ray techniques play a major role in providing information on the elemental composition and crystal and grain structures of all types of materials. The challenge to the materials characterization expert is to understand how specific instruments and analytical techniques can provide detailed information about what makes each material unique. The challenge to the materials scientist, chemist, or engineer is to know what information is needed to fully characterize each material and how to use this information to explain its behavior, develop new and improved properties, reduce costs, or ensure compliance with regulatory requirements. This comprehensive handbook presents all the necessary background to understand the applications of X-ray analysis to materials characterization with particular attention to the modern approach to these methods.



Properties and Characterization of Modern Materials

Properties and Characterization of Modern Materials Author Andreas Öchsner
ISBN-10 9789811016028
Release 2016-07-30
Pages 452
Download Link Click Here

This book focuses on robust characterization and prediction methods for materials in technical applications as well as the materials’ safety features during operation. In particular, it presents methods for reliably predicting material properties, an aspect that is becoming increasingly important as engineering materials are pushed closer and closer to their limits to boost the performance of machines and structures. To increase their engineering value, components are now designed under the consideration of their multiphysical properties and functions, which requires much more intensive investigation and characterization of these materials. The materials covered in this monograph range from metal-based groups such as lightweight alloys, to advanced high-strength steels and modern titanium alloys. Furthermore, a wide range of polymers and composite materials (e.g. with micro- and nanoparticles or fibres) is covered. The book explores methods for property prediction from classical mechanical characterization-related fields of application, for example, from wear, creep, fatigue and crack growth, to specific surface properties, to dielectric and electrochemical values. As in all fields of modern engineering, the process is often accompanied by numerical simulation and optimization.



Materials Characterization

Materials Characterization Author Ramiro Pérez Campos
ISBN-10 9783319152042
Release 2015-04-27
Pages 223
Download Link Click Here

This book covers novel research results for process and techniques of materials characterization for a wide range of materials. The authors provide a comprehensive overview of the aspects of structural and chemical characterization of these materials. The articles contained in this book covers state of the art and experimental techniques commonly used in modern materials characterization. The book includes theoretical models and numerous illustrations of structural and chemical characterization properties.



Microstructural Characterization of Materials

Microstructural Characterization of Materials Author David Brandon
ISBN-10 9781118681480
Release 2013-03-21
Pages 552
Download Link Click Here

Microstructural characterization is usually achieved by allowing some form of probe to interact with a carefully prepared specimen. The most commonly used probes are visible light, X-ray radiation, a high-energy electron beam, or a sharp, flexible needle. These four types of probe form the basis for optical microscopy, X-ray diffraction, electron microscopy, and scanning probe microscopy. Microstructural Characterization of Materials, 2nd Edition is an introduction to the expertise involved in assessing the microstructure of engineering materials and to the experimental methods used for this purpose. Similar to the first edition, this 2nd edition explores the methodology of materials characterization under the three headings of crystal structure, microstructural morphology, and microanalysis. The principal methods of characterization, including diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques are treated both qualitatively and quantitatively. An additional chapter has been added to the new edition to cover surface probe microscopy, and there are new sections on digital image recording and analysis, orientation imaging microscopy, focused ion-beam instruments, atom-probe microscopy, and 3-D image reconstruction. As well as being fully updated, this second edition also includes revised and expanded examples and exercises, with a solutions manual available at http://develop.wiley.co.uk/microstructural2e/ Microstructural Characterization of Materials, 2nd Edition will appeal to senior undergraduate and graduate students of material science, materials engineering, and materials chemistry, as well as to qualified engineers and more advanced researchers, who will find the book a useful and comprehensive general reference source.



A Guide to Materials Characterization and Chemical Analysis

A Guide to Materials Characterization and Chemical Analysis Author John P. Sibilia
ISBN-10 0471186333
Release 1996
Pages 408
Download Link Click Here

This book provides an overview of the most current techniques used for chemical analysis, materials evaluation, and materials testing. Over 100 materials methodologies, evaluations, chemical analyses, physical testing, and scientific computing techniques are covered, including the fields of molecular spectroscopy, mass spectroscopy, chromatography, chemical analysis, x-ray analysis, microscopy, surface science, thermal analysis, and polymer characterization. All of the.



Characterization of Composite Materials

Characterization of Composite Materials Author Hatsuo Ishida
ISBN-10 9781483292373
Release 2013-10-22
Pages 250
Download Link Click Here

Now, in one book, there is coverage of modern surface analytical techniques applied specifically to composite materials. Centering around spectroscopic characterization of composites and polymer-matrix composities, Characterization of Composite Materials covers techniques with a demonstrated use for composite stuides along with promising new techniques such as STM/AFM and special Raman spectroscopy. Each chapter will cover a specific technique and will provide basic background information, theories of the technique, and application examples, including futuristic state-of-the-art applications. Detailed information about the individual characterization techniques mentioned can be found in the Encyclopaedia of Materials Cahracterization, the companion volume in the Materials Characterization Series: surfaces, interfaces, thin films.



Anomalous X Ray Scattering for Materials Characterization

Anomalous X Ray Scattering for Materials Characterization Author Yoshio Waseda
ISBN-10 9783540460084
Release 2003-07-01
Pages 214
Download Link Click Here

The production of multi layered thin films with sufficient reliability is a key technology for device fabrication in micro electronics. In the Co/Cu type multi layers, for example, magnetoresistance has been found as large as 80 % at 4. 2 K and 50 % at room temperature. In addition to such gigantic mag netoresistance, these multi layers indicate anti ferromagnetic and ferromag netic oscillation behavior with an increase in the thickness of the layers of the non magnetic component. These interesting properties of the new synthetic flmctional materials are attributed to their periodic and interracial structures at a microscopic level, although the origin of such peculiar features is not fully understood. Information on the surface structure or the number density of atoms in the near surface region may provide better insight. Amorphous alloys, frequently referred to as metallic glasses, are produced by rapid quenching from the melt. The second generation amorphous alloys, called "bulk amorphous alloys", have been discovered in some Pd based and Zr based alloy systems, with a super cooled liquid region at more than 120 K. In these alloy systems, one can obtain a sample thickness of several centime ters. Growing scientific and technological curiosity about the new amorphous alloys has focused on the fundamental factors, such as the atomic scale struc ture, which are responsible for the thermal stability with certain chemical compositions.



Modern Glass Characterization

Modern Glass Characterization Author Mario Affatigato
ISBN-10 9781119051879
Release 2015-09-10
Pages 500
Download Link Click Here

The book consists of a series of edited chapters, each written by an expert in the field and focusing on a particular characterization technique as applied to glass. The book covers a variety of techniques ranging from the very common (like Raman and FTIR) to the most recent (and less well known) ones, like SEM for structural analysis and photoelastic measurements. The level of the chapters make it suitable for researchers and for graduate students about to start their research work. It will also: discuss the technique itself, background, nuances when it comes to looking at glassy materials, interpretation of results, case studies, and recent and near-future innovations Fill a widening gap in modern techniques for glass characterization Provide much needed updates on the multiple essential characterization techniques



Ultrasonic and Electromagnetic NDE for Structure and Material Characterization

Ultrasonic and Electromagnetic NDE for Structure and Material Characterization Author Tribikram Kundu
ISBN-10 9781466570474
Release 2016-04-19
Pages 890
Download Link Click Here

Most books on nondestructive evaluation (NDE) focus either on the theoretical background or on advanced applications. Bridging the gap between the two, Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications brings together the principles, equations, and applications of ultrasonic and electromagnetic NDE in a single, authoritative resource. This is also one of the first books to incorporate a number of popular NDE methods based on electromagnetic techniques. Combines Engineering and Biological Material Characterization Techniques in One Book The book begins with the relevant fundamentals of mechanics and electromagnetic theory, derives the basic equations, and then, step by step, covers state-of-the-art topics and applications of ultrasonic and electromagnetic NDE that are at the forefront of research. These include engineering, biological, and clinical applications such as structural health monitoring, acoustic microscopy, the characterization of biological cells, and terahertz imaging. Covers Numerous Applications of Ultrasonic and Electromagnetic Techniques—from the Traditional to the Advanced Written in plain language by some of the world’s leading experts, the book includes worked-out examples and exercises that make this an outstanding resource for coursework. The coverage of traditional and advanced NDE applications also appeals to practicing engineers and researchers.



Materials Characterization Techniques

Materials Characterization Techniques Author Sam Zhang
ISBN-10 9781420042955
Release 2008-12-22
Pages 344
Download Link Click Here

Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today—whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material’s structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researchers apply basic principles of chemistry, physics, and biology to address its scientific fundamentals, as well as how it is processed and engineered for use. Emphasizing practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used, advanced surface and structural characterization techniques for quality assurance, contamination control, and process improvement. This useful volume: Explores scientific processes to characterize materials using modern technologies Provides analysis of materials’ performance under specific use conditions Focuses on the interrelationships and interdependence between processing, structure, properties, and performance Details the sophisticated instruments involved in an interdisciplinary approach to understanding the wide range of mutually interacting processes, mechanisms, and materials Covers electron, X-ray-photoelectron, and UV spectroscopy; scanning-electron, atomic-force, transmission-electron, and laser-confocal-scanning-florescent microscopy, and gel electrophoresis chromatography Presents the fundamentals of vacuum, as well as X-ray diffraction principles Explaining appropriate uses and related technical requirements for characterization techniques, the authors omit lengthy and often intimidating derivations and formulations. Instead, they emphasize useful basic principles and applications of modern technologies used to characterize engineering materials, helping readers grasp micro- and nanoscale properties. This text will serve as a valuable guide for scientists and engineers involved in characterization and also as a powerful introduction to the field for advanced undergraduate and graduate students.



Nonconventional and Vernacular Construction Materials

Nonconventional and Vernacular Construction Materials Author Kent A Harries
ISBN-10 9780081000557
Release 2016-01-28
Pages 514
Download Link Click Here

Nonconventional and Vernacular Construction Materials: Characterisation, Properties and Applications provides a comprehensive repository of information on materials science and the modern structural engineering application of ancient, vernacular, and nonconventional building materials, with leading experts contributing chapters that focus on current applications and the engineering of these construction materials. Opening with a historic retrospective of nonconventional materials, Part One includes a review of vernacular construction and a discussion of the future directions for nonconventional and vernacular materials research and applications. Chapters in Part Two focus on natural fibers, including their application in cementitious composites, non-cementitious composites, and strawbale construction. In Part Three, chapters cover the use of industrial by-products and natural ashes in cement mortar and concrete, and construction using soil-cement blocks, clay-based materials, adobe and earthen materials, and ancient stone masonry. Timber, bamboo, and paper construction materials are investigated in the final section of the book. Provides a state-of-the-art review of the modern use and engineering of nonconventional building materials Contains chapters that focus on individual construction materials and address both material characterization and structural applications Covers sustainable engineering and the trend towards engineering for humanity



Microwave Electronics

Microwave Electronics Author L. F. Chen
ISBN-10 9780470020456
Release 2004-11-19
Pages 552
Download Link Click Here

The development of high speed, high frequency circuits and systems requires an understanding of the properties of materials functioning at the microwave level. This comprehensive reference sets out to address this requirement by providing guidance on the development of suitable measurement methodologies tailored for a variety of materials and application systems. Bringing together coverage of a broad range of techniques in one publication for the first time, this book: Provides a comprehensive introduction to microwave theory and microwave measurement techniques. Examines every aspect of microwave material properties, circuit design and applications. Presents materials property characterisation methods along with a discussion of the underlying theory. Outlines the importance of microwave absorbers in the reduction in noise levels in microwave circuits and their importance within defence industry applications. Relates each measurement technique to its application across the fields of microwave engineering, high-speed electronics, remote sensing and the physical sciences. This book will appeal to practising engineers and technicians working in the areas of RF, microwaves, communications, solid-state devices and radar. Senior students, researchers in microwave engineering and microelectronics and material scientists will also find this book a very useful reference.



Materials Characterization

Materials Characterization Author Yang Leng
ISBN-10 9783527670796
Release 2013-08-07
Pages 392
Download Link Click Here

Now in its second edition, this continues to serve as an ideal textbook for introductory courses on materials characterization, based on the author's experience in teaching advanced undergraduate and postgraduate university students. The new edition retains the successful didactical concept of introductions at the beginning of chapters, exercise questions and an online solution manual. In addition, all the sections have been thoroughly revised, updated and expanded, with two major new topics (electron backscattering diffraction and environmental scanning electron microscopy), as well as fifty additional questions - in total about 20% new content. The first part covers commonly used methods for microstructure analysis, including light microscopy, X-ray diffraction, transmission and scanning electron microscopy, as well as scanning probe microscopy. The second part of the book is concerned with techniques for chemical analysis and introduces X-ray energy dispersive spectroscopy, fluorescence X-ray spectroscopy and such popular surface analysis techniques as photoelectron and secondary ion mass spectroscopy. This section concludes with the two most important vibrational spectroscopies (infra-red and Raman) and the increasingly important thermal analysis. The theoretical concepts are discussed with a minimal involvement of mathematics and physics, and the technical aspects are presented with the actual measurement practice in mind. Making for an easy-to-read text, the book never loses sight of its intended audience.