Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Mathematical Modeling of Earth s Dynamical Systems

Mathematical Modeling of Earth s Dynamical Systems Author Rudy Slingerland
ISBN-10 1400839114
Release 2011-03-28
Pages 248
Download Link Click Here

Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to:

Introduction to Linear Algebra in Geology

Introduction to Linear Algebra in Geology Author J. Ferguson
ISBN-10 0412493500
Release 1994-05-31
Pages 203
Download Link Click Here

Introduction to Linear Algebra in Geology introduces linear algebra to students of geology and explores the possibilities of using the techniques as an aid to solving geological problems which can be solved numerically. A basic knowledge of geology is assumed.

Dynamic Systems

Dynamic Systems Author Raymond C. Kluever
ISBN-10 9781118289457
Release 2015-04-06
Pages 496
Download Link Click Here

Wiley introduces a new offering in dynamic systems—Dynamic Systems: Modeling, Simulation, and Control by Craig Kluever. This text highlights essential topics such as analysis, design, and control of physical engineering systems, often composed of interacting mechanical, electrical and fluid subsystem components. Dynamic Systems: Modeling, Simulation, and Control is intended for an introductory course in dynamic systems and control, and written for mechanical engineering and other engineering curricula. Major topics covered in this text include mathematical modeling, system-response analysis, and an introduction to feedback control systems. Dynamic Systems integrates an early introduction to numerical simulation using MATLAB®’s Simulink for integrated systems. Simulink® and MATLAB® tutorials for both software programs will also be provided. The author’s text also has a strong emphasis on real-world case studies. Derived from top-tier engineering from the AMSE Journal of Dynamic Systems, Measurement, and Control, case studies are leveraged to demonstrate fundamental concepts as well as the analysis of complex engineering systems. In addition, Dynamic Systems delivers a wide variety of end of chapter problems, including conceptual problems, MATLAB® problems, and Engineering Application problems.

Dynamic Modeling of Environmental Systems

Dynamic Modeling of Environmental Systems Author Michael Deaton
ISBN-10 9781461213000
Release 2012-12-06
Pages 197
Download Link Click Here

A primer on modeling concepts and applications that is specifically geared toward the environmental field. Sections on modeling terminology, the uses of models, the model-building process, and the interpretation of output provide the foundation for detailed applications. After an introduction to the basics of dynamic modeling, the book leads students through an analysis of several environmental problems, including surface-water pollution, matter-cycling disruptions, and global warming. The scientific and technical context is provided for each problem, and the methods for analyzing and designing appropriate modeling approaches is provided. While the mathematical content does not exceed the level of a first-semester calculus course, the book gives students all of the background, examples, and practice exercises needed both to use and understand environmental modeling. It is suitable for upper-level undergraduate and beginning-graduate level environmental professionals seeking an introduction to modeling in their field.

Modeling of Atmospheric Chemistry

Modeling of Atmospheric Chemistry Author Guy P. Brasseur
ISBN-10 9781108210959
Release 2017-06-19
Download Link Click Here

Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.

Metaphor in Specialist Discourse

Metaphor in Specialist Discourse Author J. Berenike Herrmann
ISBN-10 9789027267849
Release 2015-12-15
Pages 319
Download Link Click Here

Metaphor in Specialist Discourse presents multiple perspectives on metaphor use in specialist and popularized discourse contexts. Using genre and register as starting parameters for deeper exploration, and pushing the boundaries further to open up new areas and possibilities, ten independent articles investigate metaphor use across a range of specialist domains of discourse, such as biology research articles, psychological counseling, soccer commentaries, workfloor communication, and penal policy documents. Framed by two theoretical chapters, the book is a contribution to the study of metaphor use in distinct discourse settings that will be of value to linguists and metaphor scholars of different persuasions, graduate students of linguistics and related disciplines, and practitioners of specialized areas with an interest in (verbal or gestural) language use in their areas of expertise. It shows that aspects of discourse variation are the beginning of, not an afterthought to, accurate empirical metaphor studies.

Complex and Adaptive Dynamical Systems

Complex and Adaptive Dynamical Systems Author Claudius Gros
ISBN-10 9783319162652
Release 2015-04-01
Pages 422
Download Link Click Here

This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard mathematical tools for an advanced undergraduate course in the natural sciences or engineering. Each chapter includes exercises and suggestions for further reading, and the solutions to all exercises are provided in the last chapter. From the reviews of previous editions: This is a very interesting introductory book written for a broad audience of graduate students in natural sciences and engineering. It can be equally well used both for teac hing and self-education. Very well structured and every topic is illustrated with simple and motivating examples. This is a true guidebook to the world of complex nonlinear phenomena. (Ilya Pavlyukevich, Zentralblatt MATH, Vol. 1146, 2008) Claudius Gros’ Complex and Adaptive Dynamical Systems: A Primer is a welcome addition to the literature. A particular strength of the book is its emphasis on analytical techniques for studying complex systems. (David P. Feldman, Physics Today, July, 2009).

Foundations of Science Mathematics

Foundations of Science Mathematics Author Deviderjit Singh Sivia
ISBN-10 0198504284
Release 1999-06-24
Pages 98
Download Link Click Here

This text spans a large range of mathematics, from basic algebra to calculus and Fourier transforms. Its tutorial style bridges the gap between school and university while its conciseness provides a useful reference for the professional.

Mathematics for the Life Sciences

Mathematics for the Life Sciences Author Glenn Ledder
ISBN-10 9781461472766
Release 2013-08-29
Pages 431
Download Link Click Here

​​ ​​ Mathematics for the Life Sciences provides present and future biologists with the mathematical concepts and tools needed to understand and use mathematical models and read advanced mathematical biology books. It presents mathematics in biological contexts, focusing on the central mathematical ideas, and providing detailed explanations. The author assumes no mathematics background beyond algebra and precalculus. Calculus is presented as a one-chapter primer that is suitable for readers who have not studied the subject before, as well as readers who have taken a calculus course and need a review. This primer is followed by a novel chapter on mathematical modeling that begins with discussions of biological data and the basic principles of modeling. The remainder of the chapter introduces the reader to topics in mechanistic modeling (deriving models from biological assumptions) and empirical modeling (using data to parameterize and select models). The modeling chapter contains a thorough treatment of key ideas and techniques that are often neglected in mathematics books. It also provides the reader with a sophisticated viewpoint and the essential background needed to make full use of the remainder of the book, which includes two chapters on probability and its applications to inferential statistics and three chapters on discrete and continuous dynamical systems. The biological content of the book is self-contained and includes many basic biology topics such as the genetic code, Mendelian genetics, population dynamics, predator-prey relationships, epidemiology, and immunology. The large number of problem sets include some drill problems along with a large number of case studies. The latter are divided into step-by-step problems and sorted into the appropriate section, allowing readers to gradually develop complete investigations from understanding the biological assumptions to a complete analysis.

Mathematics of Planet Earth

Mathematics of Planet Earth Author Darryl D. Holm
ISBN-10 1786343827
Release 2017-07
Pages 250
Download Link Click Here

Mathematics of Planet Earth (MPE) was started and continues to be consolidated as a collaboration of mathematical science organisations around the world. These organisations work together to tackle global environmental, social and economic problems using mathematics. This textbook introduces the fundamental topics of MPE to advanced undergraduate and graduate students in mathematics, physics and engineering while explaining their modern usages and operational connections. In particular, it discusses the links between partial differential equations, data assimilation, dynamical systems, mathematical modelling and numerical simulations and applies them to insightful examples. The text also complements advanced courses in geophysical fluid dynamics (GFD) for meteorology, atmospheric science and oceanography. It links the fundamental scientific topics of GFD with their potential usage in applications of climate change and weather variability. The immediacy of examples provides an excellent introduction for experienced researchers interested in learning the scope and primary concepts of MPE.

Engineering Dynamics

Engineering Dynamics Author Oliver M. O'Reilly
ISBN-10 9781441963604
Release 2010-05-25
Pages 240
Download Link Click Here

This Primer is intended to provide the theoretical background for the standard undergraduate, mechanical engineering course in dynamics. The book contains several worked examples and summaries and exercises at the end of each chapter to aid readers in their understanding of the material. Teachers who wish to have a source of more detailed theory for the course, as well as graduate students who need a refresher course on undergraduate dynamics when preparing for certain first year graduate school examinations, and students taking the course will find the work very helpful.

The Earth System

The Earth System Author Lee R.. Kump
ISBN-10 1292021632
Release 2013-07-23
Pages 462
Download Link Click Here

For courses in Earth Systems Science offered in departments of Geology, Earth Science, Geography and Environmental Science. The first textbook of its kind that addresses the issues of global change from a true Earth systems perspective, The Earth System offers a solid emphasis on lessons from Earth's history that may guide decision-making in the future. It is more rigorous and quantitative than traditional Earth science books, while remaining appropriate for non-science majors.

Simple Mathematical Models of Gene Regulatory Dynamics

Simple Mathematical Models of Gene Regulatory Dynamics Author Michael Mackey
ISBN-10 9783319453187
Release 2016-11-09
Pages 124
Download Link Click Here

This is a short and self-contained introduction to the field of mathematical modeling of gene-networks in bacteria. As an entry point to the field, we focus on the analysis of simple gene-network dynamics. The notes commence with an introduction to the deterministic modeling of gene-networks, with extensive reference to applicable results coming from dynamical systems theory. The second part of the notes treats extensively several approaches to the study of gene-network dynamics in the presence of noise—either arising from low numbers of molecules involved, or due to noise external to the regulatory process. The third and final part of the notes gives a detailed treatment of three well studied and concrete examples of gene-network dynamics by considering the lactose operon, the tryptophan operon, and the lysis-lysogeny switch. The notes contain an index for easy location of particular topics as well as an extensive bibliography of the current literature. The target audience of these notes are mainly graduates students and young researchers with a solid mathematical background (calculus, ordinary differential equations, and probability theory at a minimum), as well as with basic notions of biochemistry, cell biology, and molecular biology. They are meant to serve as a readable and brief entry point into a field that is currently highly active, and will allow the reader to grasp the current state of research and so prepare them for defining and tackling new research problems.

Mathematics and Climate

Mathematics and Climate Author Hans Kaper
ISBN-10 9781611972603
Release 2013-10-18
Pages 297
Download Link Click Here

Mathematics and Climate is a timely textbook aimed at students and researchers in mathematics and statistics who are interested in current issues of climate science, as well as at climate scientists who wish to become familiar with qualitative and quantitative methods of mathematics and statistics. The authors emphasize conceptual models that capture important aspects of Earth's climate system and present the mathematical and statistical techniques that can be applied to their analysis. Topics from climate science include the Earth?s energy balance, temperature distribution, ocean circulation patterns such as El Ni?o?Southern Oscillation, ice caps and glaciation periods, the carbon cycle, and the biological pump. Among the mathematical and statistical techniques presented in the text are dynamical systems and bifurcation theory, Fourier analysis, conservation laws, regression analysis, and extreme value theory. The following features make Mathematics and Climate a valuable teaching resource: issues of current interest in climate science and sustainability are used to introduce the student to the methods of mathematics and statistics; the mathematical sophistication increases as the book progresses and topics can thus be selected according to interest and level of knowledge; each chapter ends with a set of exercises that reinforce or enhance the material presented in the chapter and stimulate critical thinking and communication skills; and the book contains an extensive list of references to the literature, a glossary of terms for the nontechnical reader, and a detailed index.

Systems Biology

Systems Biology Author Andreas Kremling
ISBN-10 9781466567894
Release 2013-11-12
Pages 379
Download Link Click Here

Drawing on the latest research in the field, Systems Biology: Mathematical Modeling and Model Analysis presents many methods for modeling and analyzing biological systems, in particular cellular systems. It shows how to use predictive mathematical models to acquire and analyze knowledge about cellular systems. It also explores how the models are systematically applied in biotechnology. The first part of the book introduces biological basics, such as metabolism, signaling, gene expression, and control as well as mathematical modeling fundamentals, including deterministic models and thermodynamics. The text also discusses linear regression methods, explains the differences between linear and nonlinear regression, and illustrates how to determine input variables to improve estimation accuracy during experimental design. The second part covers intracellular processes, including enzymatic reactions, polymerization processes, and signal transduction. The author highlights the process–function–behavior sequence in cells and shows how modeling and analysis of signal transduction units play a mediating role between process and function. The third part presents theoretical methods that address the dynamics of subsystems and the behavior near a steady state. It covers techniques for determining different time scales, sensitivity analysis, structural kinetic modeling, and theoretical control engineering aspects, including a method for robust control. It also explores frequent patterns (motifs) in biochemical networks, such as the feed-forward loop in the transcriptional network of E. coli. Moving on to models that describe a large number of individual reactions, the last part looks at how these cellular models are used in biotechnology. The book also explains how graphs can illustrate the link between two components in large networks with several interactions.


Neuroscience Author Alwyn Scott
ISBN-10 9780387224633
Release 2007-12-14
Pages 352
Download Link Click Here

This book will be of interest to anyone who wishes to know what role mathematics can play in attempting to comprehend the dynamics of the human brain. It also aims to serve as a general introduction to neuromathematics. The book gives the reader a qualitative understanding and working knowledge of useful mathematical applications to the field of neuroscience. The book is readable by those who have little knowledge of mathematics for neuroscience but are committed to begin acquiring such knowledge.

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Author Yuri A. Kuznetsov
ISBN-10 9781475724219
Release 2013-03-09
Pages 518
Download Link Click Here

A solid basis for anyone studying the dynamical systems theory, providing the necessary understanding of the approaches, methods, results and terminology used in the modern applied-mathematics literature. Covering the basic topics in the field, the text can be used in a course on nonlinear dynamical systems or system theory. Special attention is given to efficient numerical implementations of the developed techniques, illustrated by several examples from recent research papers. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used, making this book suitable for advanced undergraduate or graduate students in applied mathematics, as well as for researchers in other disciplines who use dynamical systems as model tools in their studies.