Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Maximum Likelihood Estimation and Inference

Maximum Likelihood Estimation and Inference Author Russell B. Millar
ISBN-10 9781119977711
Release 2011-07-26
Pages 384
Download Link Click Here

This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.



Simplicity Complexity and Modelling

Simplicity  Complexity and Modelling Author Mike Christie
ISBN-10 9781119960966
Release 2011-10-19
Pages 232
Download Link Click Here

Several points of disagreement exist between different modelling traditions as to whether complex models are always better than simpler models, as to how to combine results from different models and how to propagate model uncertainty into forecasts. This book represents the result of collaboration between scientists from many disciplines to show how these conflicts can be resolved. Key Features: Introduces important concepts in modelling, outlining different traditions in the use of simple and complex modelling in statistics. Provides numerous case studies on complex modelling, such as climate change, flood risk and new drug development. Concentrates on varying models, including flood risk analysis models, the petrol industry forecasts and summarizes the evolution of water distribution systems. Written by experienced statisticians and engineers in order to facilitate communication between modellers in different disciplines. Provides a glossary giving terms commonly used in different modelling traditions. This book provides a much-needed reference guide to approaching statistical modelling. Scientists involved with modelling complex systems in areas such as climate change, flood prediction and prevention, financial market modelling and systems engineering will benefit from this book. It will also be a useful source of modelling case histories.



In All Likelihood

In All Likelihood Author Yudi Pawitan
ISBN-10 9780191650581
Release 2013-01-17
Pages 544
Download Link Click Here

Based on a course in the theory of statistics this text concentrates on what can be achieved using the likelihood/Fisherian method of taking account of uncertainty when studying a statistical problem. It takes the concept ot the likelihood as providing the best methods for unifying the demands of statistical modelling and the theory of inference. Every likelihood concept is illustrated by realistic examples, which are not compromised by computational problems. Examples range from a simile comparison of two accident rates, to complex studies that require generalised linear or semiparametric modelling. The emphasis is that the likelihood is not simply a device to produce an estimate, but an important tool for modelling. The book generally takes an informal approach, where most important results are established using heuristic arguments and motivated with realistic examples. With the currently available computing power, examples are not contrived to allow a closed analytical solution, and the book can concentrate on the statistical aspects of the data modelling. In addition to classical likelihood theory, the book covers many modern topics such as generalized linear models and mixed models, non parametric smoothing, robustness, the EM algorithm and empirical likelihood.



Designing Experiments and Analyzing Data

Designing Experiments and Analyzing Data Author Scott E. Maxwell
ISBN-10 9781317284550
Release 2017-09-11
Pages 1056
Download Link Click Here

Designing Experiments and Analyzing Data: A Model Comparison Perspective (3rd edition) offers an integrative conceptual framework for understanding experimental design and data analysis. Maxwell, Delaney, and Kelley first apply fundamental principles to simple experimental designs followed by an application of the same principles to more complicated designs. Their integrative conceptual framework better prepares readers to understand the logic behind a general strategy of data analysis that is appropriate for a wide variety of designs, which allows for the introduction of more complex topics that are generally omitted from other books. Numerous pedagogical features?further facilitate understanding:?examples of published research demonstrate the applicability of each chapter’s content; flowcharts?assist in choosing the most appropriate procedure;?end-of-chapter lists of important formulas highlight key ideas and assist readers in locating the initial presentation of equations; useful programming code and tips are provided throughout the book and in associated resources available online, and?extensive sets of exercises?help develop a deeper understanding of the subject.?Detailed solutions?for some of the exercises and?realistic data sets?are included on the website (DesigningExperiments.com). The pedagogical approach used throughout the book enables readers to gain an overview of experimental design, from conceptualization of the research question to analysis of the data. The book and its companion website with web apps, tutorials, and detailed code are ideal for students and researchers seeking the optimal way to design their studies and analyze the resulting data.



Spatio temporal Design

Spatio temporal Design Author Jorge Mateu
ISBN-10 9781118441886
Release 2012-11-05
Pages 382
Download Link Click Here

A state-of-the-art presentation of optimum spatio-temporal sampling design - bridging classic ideas with modern statistical modeling concepts and the latest computational methods. Spatio-temporal Design presents a comprehensive state-of-the-art presentation combining both classical and modern treatments of network design and planning for spatial and spatio-temporal data acquisition. A common problem set is interwoven throughout the chapters, providing various perspectives to illustrate a complete insight to the problem at hand. Motivated by the high demand for statistical analysis of data that takes spatial and spatio-temporal information into account, this book incorporates ideas from the areas of time series, spatial statistics and stochastic processes, and combines them to discuss optimum spatio-temporal sampling design. Spatio-temporal Design: Advances in Efficient Data Acquisition: Provides an up-to-date account of how to collect space-time data for monitoring, with a focus on statistical aspects and the latest computational methods Discusses basic methods and distinguishes between design and model-based approaches to collecting space-time data. Features model-based frequentist design for univariate and multivariate geostatistics, and second-phase spatial sampling. Integrates common data examples and case studies throughout the book in order to demonstrate the different approaches and their integration. Includes real data sets, data generating mechanisms and simulation scenarios. Accompanied by a supporting website featuring R code. Spatio-temporal Design presents an excellent book for graduate level students as well as a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.



An Introduction to Applied Multivariate Analysis with R

An Introduction to Applied Multivariate Analysis with R Author Brian Everitt
ISBN-10 1441996508
Release 2011-04-23
Pages 274
Download Link Click Here

The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.



Introduction to WinBUGS for Ecologists

Introduction to WinBUGS for Ecologists Author Marc Kery
ISBN-10 0123786061
Release 2010-07-19
Pages 320
Download Link Click Here

Introduction to WinBUGS for Ecologists introduces applied Bayesian modeling to ecologists using the highly acclaimed, free WinBUGS software. It offers an understanding of statistical models as abstract representations of the various processes that give rise to a data set. Such an understanding is basic to the development of inference models tailored to specific sampling and ecological scenarios. The book begins by presenting the advantages of a Bayesian approach to statistics and introducing the WinBUGS software. It reviews the four most common statistical distributions: the normal, the uniform, the binomial, and the Poisson. It describes the two different kinds of analysis of variance (ANOVA): one-way and two- or multiway. It looks at the general linear model, or ANCOVA, in R and WinBUGS. It introduces generalized linear model (GLM), i.e., the extension of the normal linear model to allow error distributions other than the normal. The GLM is then extended contain additional sources of random variation to become a generalized linear mixed model (GLMM) for a Poisson example and for a binomial example. The final two chapters showcase two fairly novel and nonstandard versions of a GLMM. The first is the site-occupancy model for species distributions; the second is the binomial (or N-) mixture model for estimation and modeling of abundance. Introduction to the essential theories of key models used by ecologists Complete juxtaposition of classical analyses in R and Bayesian analysis of the same models in WinBUGS Provides every detail of R and WinBUGS code required to conduct all analyses Companion Web Appendix that contains all code contained in the book and additional material (including more code and solutions to exercises)



The SAGE Handbook of Multilevel Modeling

The SAGE Handbook of Multilevel Modeling Author Marc A. Scott
ISBN-10 9781473971318
Release 2013-08-31
Pages 696
Download Link Click Here

In this important new Handbook, the editors have gathered together a range of leading contributors to introduce the theory and practice of multilevel modeling. The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field. Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference. Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models. Part III includes discussion of missing data and robust methods, assessment of fit and software. Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines. Combining practical pieces with overviews of the field, this Handbook is essential reading for any student or researcher looking to apply multilevel techniques in their own research.



Maximum Likelihood Estimation

Maximum Likelihood Estimation Author Scott R. Eliason
ISBN-10 0803941072
Release 1993
Pages 87
Download Link Click Here

In this volume the underlying logic and practice of maximum likelihood (ML) estimation is made clear by providing a general modeling framework that utilizes the tools of ML methods. This framework offers readers a flexible modeling strategy since it accommodates cases from the simplest linear models to the most complex nonlinear models that link a system of endogenous and exogenous variables with non-normal distributions. Using examples to illustrate the techniques of finding ML estimators and estimates, Eliason discusses: what properties are desirable in an estimator; basic techniques for finding ML solutions; the general form of the covariance matrix for ML estimates; the sampling distribution of ML estimators; the application of ML in the normal distribution as well as in other useful distributions; and some helpful illustrations of likelihoods.



Crossover Designs

Crossover Designs Author Kung-Jong Lui
ISBN-10 9781119114697
Release 2016-08-08
Pages 248
Download Link Click Here

A comprehensive and practical resource for analyses of crossover designs For ethical reasons, it is vital to keep the number of patients in a clinical trial as low as possible. As evidenced by extensive research publications, crossover design can be a useful and powerful tool to reduce the number of patients needed for a parallel group design in studying treatments for non-curable chronic diseases. This book introduces commonly-used and well-established statistical tests and estimators in epidemiology that can easily be applied to hypothesis testing and estimation of the relative treatment effect for various types of data scale in crossover designs. Models with distribution-free random effects are assumed and hence most approaches considered here are semi-parametric. The book provides clinicians and biostatisticians with the exact test procedures and exact interval estimators, which are applicable even when the number of patients in a crossover trial is small. Systematic discussion on sample size determination is also included, which will be a valuable resource for researchers involved in crossover trial design. Key features: Provides exact test procedures and interval estimators, which are especially of use in small-sample cases. Presents most test procedures and interval estimators in closed-forms, enabling readers to calculate them by use of a pocket calculator or commonly-used statistical packages. Each chapter is self-contained, allowing the book to be used a reference resource. Uses real-life examples to illustrate the practical use of test procedures and estimators Provides extensive exercises to help readers appreciate the underlying theory, learn other relevant test procedures and understand how to calculate the required sample size. Crossover Designs: Testing, Estimation and Sample Size will be a useful resource for researchers from biostatistics, as well as pharmaceutical and clinical sciences. It can also be used as a textbook or reference for graduate students studying clinical experiments.



Image Statistics in Visual Computing

Image Statistics in Visual Computing Author Tania Pouli
ISBN-10 9781439874905
Release 2013-12-13
Pages 372
Download Link Click Here

To achieve the complex task of interpreting what we see, our brains rely on statistical regularities and patterns in visual data. Knowledge of these regularities can also be considerably useful in visual computing disciplines, such as computer vision, computer graphics, and image processing. The field of natural image statistics studies the regularities to exploit their potential and better understand human vision. With numerous color figures throughout, Image Statistics in Visual Computing covers all aspects of natural image statistics, from data collection to analysis to applications in computer graphics, computational photography, image processing, and art. The authors keep the material accessible, providing mathematical definitions where appropriate to help readers understand the transforms that highlight statistical regularities present in images. The book also describes patterns that arise once the images are transformed and gives examples of applications that have successfully used statistical regularities. Numerous references enable readers to easily look up more information about a specific concept or application. A supporting website also offers additional information, including descriptions of various image databases suitable for statistics. Collecting state-of-the-art, interdisciplinary knowledge in one source, this book explores the relation of natural image statistics to human vision and shows how natural image statistics can be applied to visual computing. It encourages readers in both academic and industrial settings to develop novel insights and applications in all disciplines that relate to visual computing.



A Practical Guide to Designing Phase II Trials in Oncology

A Practical Guide to Designing Phase II Trials in Oncology Author Sarah R. Brown
ISBN-10 9781118763636
Release 2014-03-28
Pages 256
Download Link Click Here

How to identify optimal phase II trial designs Providing a practical guide containing the information needed to make crucial decisions regarding phase II trial designs, A Practical Guide to Designing Phase II Trials in Oncology sets forth specific points for consideration between the statistician and clinician when designing a phase II trial, including issues such as how the treatment works, choice of outcome measure and randomization, and considering both academic and industry perspectives. A comprehensive and systematic library of available phase II trial designs is included, saving time otherwise spent considering multiple manuscripts, and real-life practical examples of using this approach to design phase II trials in cancer are given. A Practical Guide to Designing Phase II Trials in Oncology: Offers a structured and practical approach to phase II trial design. Considers trial design from both an academic and industry perspective. Includes a structured library of available phase II trial designs. Is relevant to both clinical and statistical researchers at all levels Includes real life examples of applying this approach. For those new to trial design, A Practical Guide to Designing Phase II Trials in Oncology will be a unique and practical learning tool, providing an introduction to the concepts behind informed decision making in phase II trials. For more experienced practitioners, the book will offer an overview of new, less familiar approaches to phase II trial design, providing alternative options to those which they may have previously used.



STATISTICAL INFERENCE THEORY OF ESTIMATION

STATISTICAL INFERENCE   THEORY OF ESTIMATION Author MANOJ KUMAR SRIVASTAVA
ISBN-10 9788120349308
Release 2014-04-03
Pages 808
Download Link Click Here

This book is sequel to a book Statistical Inference: Testing of Hypotheses (published by PHI Learning). Intended for the postgraduate students of statistics, it introduces the problem of estimation in the light of foundations laid down by Sir R.A. Fisher (1922) and follows both classical and Bayesian approaches to solve these problems. The book starts with discussing the growing levels of data summarization to reach maximal summarization and connects it with sufficient and minimal sufficient statistics. The book gives a complete account of theorems and results on uniformly minimum variance unbiased estimators (UMVUE)—including famous Rao and Blackwell theorem to suggest an improved estimator based on a sufficient statistic and Lehmann-Scheffe theorem to give an UMVUE. It discusses Cramer-Rao and Bhattacharyya variance lower bounds for regular models, by introducing Fishers information and Chapman, Robbins and Kiefer variance lower bounds for Pitman models. Besides, the book introduces different methods of estimation including famous method of maximum likelihood and discusses large sample properties such as consistency, consistent asymptotic normality (CAN) and best asymptotic normality (BAN) of different estimators. Separate chapters are devoted for finding Pitman estimator, among equivariant estimators, for location and scale models, by exploiting symmetry structure, present in the model, and Bayes, Empirical Bayes, Hierarchical Bayes estimators in different statistical models. Systematic exposition of the theory and results in different statistical situations and models, is one of the several attractions of the presentation. Each chapter is concluded with several solved examples, in a number of statistical models, augmented with exposition of theorems and results. KEY FEATURES • Provides clarifications for a number of steps in the proof of theorems and related results., • Includes numerous solved examples to improve analytical insight on the subject by illustrating the application of theorems and results. • Incorporates Chapter-end exercises to review student’s comprehension of the subject. • Discusses detailed theory on data summarization, unbiased estimation with large sample properties, Bayes and Minimax estimation, separately, in different chapters.



Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences

Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences Author Edward Gbur
ISBN-10 0891181822
Release 2012
Pages 283
Download Link Click Here

Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences provides readers with an understanding and appreciation for the design and analysis of mixed models for non-normally distributed data. It is the only publication of its kind directed specifically toward the agricultural and natural resources sciences audience. Readers will especially benefit from the numerous worked examples based on actual experimental data and the discussion of pitfalls associated with incorrect analyses.



Applied Mixed Models in Medicine

Applied Mixed Models in Medicine Author Helen Brown
ISBN-10 9781118778241
Release 2014-12-12
Pages 536
Download Link Click Here

A fully updated edition of this key text on mixed models, focusing on applications in medical research The application of mixed models is an increasingly popular way of analysing medical data, particularly in the pharmaceutical industry. A mixed model allows the incorporation of both fixed and random variables within a statistical analysis, enabling efficient inferences and more information to be gained from the data. There have been many recent advances in mixed modelling, particularly regarding the software and applications. This third edition of Brown and Prescott’s groundbreaking text provides an update on the latest developments, and includes guidance on the use of current SAS techniques across a wide range of applications. Presents an overview of the theory and applications of mixed models in medical research, including the latest developments and new sections on incomplete block designs and the analysis of bilateral data. Easily accessible to practitioners in any area where mixed models are used, including medical statisticians and economists. Includes numerous examples using real data from medical and health research, and epidemiology, illustrated with SAS code and output. Features the new version of SAS, including new graphics for model diagnostics and the procedure PROC MCMC. Supported by a website featuring computer code, data sets, and further material. This third edition will appeal to applied statisticians working in medical research and the pharmaceutical industry, as well as teachers and students of statistics courses in mixed models. The book will also be of great value to a broad range of scientists, particularly those working in the medical and pharmaceutical areas.



Multiple Imputation and its Application

Multiple Imputation and its Application Author James Carpenter
ISBN-10 9781119942276
Release 2012-12-21
Pages 368
Download Link Click Here

A practical guide to analysing partially observed data. Collecting, analysing and drawing inferences from data is central to research in the medical and social sciences. Unfortunately, it is rarely possible to collect all the intended data. The literature on inference from the resulting incomplete data is now huge, and continues to grow both as methods are developed for large and complex data structures, and as increasing computer power and suitable software enable researchers to apply these methods. This book focuses on a particular statistical method for analysing and drawing inferences from incomplete data, called Multiple Imputation (MI). MI is attractive because it is both practical and widely applicable. The authors aim is to clarify the issues raised by missing data, describing the rationale for MI, the relationship between the various imputation models and associated algorithms and its application to increasingly complex data structures. Multiple Imputation and its Application: Discusses the issues raised by the analysis of partially observed data, and the assumptions on which analyses rest. Presents a practical guide to the issues to consider when analysing incomplete data from both observational studies and randomized trials. Provides a detailed discussion of the practical use of MI with real-world examples drawn from medical and social statistics. Explores handling non-linear relationships and interactions with multiple imputation, survival analysis, multilevel multiple imputation, sensitivity analysis via multiple imputation, using non-response weights with multiple imputation and doubly robust multiple imputation. Multiple Imputation and its Application is aimed at quantitative researchers and students in the medical and social sciences with the aim of clarifying the issues raised by the analysis of incomplete data data, outlining the rationale for MI and describing how to consider and address the issues that arise in its application.



Applied Statistical Inference

Applied Statistical Inference Author Leonhard Held
ISBN-10 9783642378874
Release 2013-11-12
Pages 376
Download Link Click Here

This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint. Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective. A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis.