Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Metaheuristics

Metaheuristics Author El-Ghazali Talbi
ISBN-10 0470496908
Release 2009-05-27
Pages 500
Download Link Click Here

A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.



Metaheuristics

Metaheuristics Author El-Ghazali Talbi
ISBN-10 9780470496909
Release 2009-05-27
Pages 500
Download Link Click Here

A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.



Metaheuristics

Metaheuristics Author El-Ghazali Talbi
ISBN-10 0470278587
Release 2009-06-22
Pages 624
Download Link Click Here

A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.



Hybrid Metaheuristics

Hybrid Metaheuristics Author Maria J. Blesa
ISBN-10 9783319396361
Release 2016-06-01
Pages 223
Download Link Click Here

This book constitutes the refereed proceedings of the 10th International Workshop on Hybrid Metaheuristics, HM 2016, held in Plymouth, UK, in June 2016. The 15 revised full papers presented were carefully reviewed and selected from 43 submissions. The selected papers are of interest for all the researchers working on integrating metaheuristics with other areas for solving both optimization and constraint satisfaction problems. They represent as well a sample of current research demonstrating how metaheuristics can be integrated with integer linear programming and other operational research techniques for tackling difficult and relevant problems.



Metaheuristics in Water Geotechnical and Transport Engineering

Metaheuristics in Water  Geotechnical and Transport Engineering Author Xin-She Yang
ISBN-10 9780123982964
Release 2012
Pages 484
Download Link Click Here

Due to an ever-decreasing supply in raw materials and stringent constraints on conventional energy sources, demand for lightweight, efficient and low cost structures has become crucially important in modern engineering design. This requires engineers to search for optimal and robust design options to address design problems that are often large in scale and highly nonlinear, making finding solutions challenging. In the past two decades, metaheuristic algorithms have shown promising power, efficiency and versatility in solving these difficult optimization problems. This book examines the latest developments of metaheuristics and their applications in water, geotechnical and transport engineering offering practical case studies as examples to demonstrate real world applications. Topics cover a range of areas within engineering, including reviews of optimization algorithms, artificial intelligence, cuckoo search, genetic programming, neural networks, multivariate adaptive regression, swarm intelligence, genetic algorithms, ant colony optimization, evolutionary multiobjective optimization with diverse applications in engineering such as behavior of materials, geotechnical design, flood control, water distribution and signal networks. This book can serve as a supplementary text for design courses and computation in engineering as well as a reference for researchers and engineers in metaheursitics, optimization in civil engineering and computational intelligence. Provides detailed descriptions of all major metaheuristic algorithms with a focus on practical implementation Develops new hybrid and advanced methods suitable for civil engineering problems at all levels Appropriate for researchers and advanced students to help to develop their work



Metaheuristics in Uncertain Environments

Metaheuristics in Uncertain Environments Author El-Ghazali Talbi
ISBN-10 1118592476
Release 2013-04-12
Pages 500
Download Link Click Here

A comprehensive book on the design and implementation of metaheuristics in uncertain environments, Metaheuristics in Uncertain Environments provides a thorough background on designing and deploying algorithms to solve complex optimization problems. Numerous real-world examples of problems and solutions demonstrate how metaheuristics are applied in such fields as telecommunication, logistics and transportation, bioinformatics, engineering design, scheduling, environment, and finance. Useful for undergraduate to postgraduate students as well as engineers, the book facilities learning by including case studies, end-of-chapter questions, tutorials on a supplementary website, and end of chapter problem solutions.



Metaheuristic Applications in Structures and Infrastructures

Metaheuristic Applications in Structures and Infrastructures Author Amir Hossein Gandomi
ISBN-10 9780128066249
Release 2013-01-31
Pages 568
Download Link Click Here

Metaheuristic Applications in Structures and Infrastructures has been writing in one form or another for most of life. You can find so many inspiration from Metaheuristic Applications in Structures and Infrastructures also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Metaheuristic Applications in Structures and Infrastructures book for free.



Advances in Metaheuristics

Advances in Metaheuristics Author Timothy Ganesan
ISBN-10 9781315297637
Release 2016-11-28
Pages 233
Download Link Click Here

Advances in Metaheuristics: Applications in Engineering Systems provides details on current approaches utilized in engineering optimization. It gives a comprehensive background on metaheuristic applications, focusing on main engineering sectors such as energy, process, and materials. It discusses topics such as algorithmic enhancements and performance measurement approaches, and provides insights into the implementation of metaheuristic strategies to multi-objective optimization problems. With this book, readers can learn to solve real-world engineering optimization problems effectively using the appropriate techniques from emerging fields including evolutionary and swarm intelligence, mathematical programming, and multi-objective optimization. The ten chapters of this book are divided into three parts. The first part discusses three industrial applications in the energy sector. The second focusses on process optimization and considers three engineering applications: optimization of a three-phase separator, process plant, and a pre-treatment process. The third and final part of this book covers industrial applications in material engineering, with a particular focus on sand mould-systems. It also includes discussions on the potential improvement of algorithmic characteristics via strategic algorithmic enhancements. This book helps fill the existing gap in literature on the implementation of metaheuristics in engineering applications and real-world engineering systems. It will be an important resource for engineers and decision-makers selecting and implementing metaheuristics to solve specific engineering problems.



Design of Modern Heuristics

Design of Modern Heuristics Author Franz Rothlauf
ISBN-10 9783540729624
Release 2011-07-17
Pages 267
Download Link Click Here

Most textbooks on modern heuristics provide the reader with detailed descriptions of the functionality of single examples like genetic algorithms, genetic programming, tabu search, simulated annealing, and others, but fail to teach the underlying concepts behind these different approaches. The author takes a different approach in this textbook by focusing on the users' needs and answering three fundamental questions: First, he tells us which problems modern heuristics are expected to perform well on, and which should be left to traditional optimization methods. Second, he teaches us to systematically design the "right" modern heuristic for a particular problem by providing a coherent view on design elements and working principles. Third, he shows how we can make use of problem-specific knowledge for the design of efficient and effective modern heuristics that solve not only small toy problems but also perform well on large real-world problems. This book is written in an easy-to-read style and it is aimed at students and practitioners in computer science, operations research and information systems who want to understand modern heuristics and are interested in a guide to their systematic design and use. This book is written in an easy-to-read style and it is aimed at students and practitioners in computer science, operations research and information systems who want to understand modern heuristics and are interested in a guide to their systematic design and use. This book is written in an easy-to-read style and it is aimed at students and practitioners in computer science, operations research and information systems who want to understand modern heuristics and are interested in a guide to their systematic design and use.



Tuning Metaheuristics

Tuning Metaheuristics Author Mauro Birattari
ISBN-10 9783642004834
Release 2009-05-02
Pages 221
Download Link Click Here

This book lays the foundations for a scientific approach to tuning metaheuristics. The fundamental intuition that underlies Birattari's approach is that the tuning problem has much in common with the problems that are typically faced in machine learning.



Meta Heuristics Optimization Algorithms in Engineering Business Economics and Finance

Meta Heuristics Optimization Algorithms in Engineering  Business  Economics  and Finance Author Vasant, Pandian M.
ISBN-10 9781466620872
Release 2012-09-30
Pages 734
Download Link Click Here

Optimization techniques have developed into a significant area concerning industrial, economics, business, and financial systems. With the development of engineering and financial systems, modern optimization has played an important role in service-centered operations and as such has attracted more attention to this field. Meta-heuristic hybrid optimization is a newly development mathematical framework based optimization technique. Designed by logicians, engineers, analysts, and many more, this technique aims to study the complexity of algorithms and problems. Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance explores the emerging study of meta-heuristics optimization algorithms and methods and their role in innovated real world practical applications. This book is a collection of research on the areas of meta-heuristics optimization algorithms in engineering, business, economics, and finance and aims to be a comprehensive reference for decision makers, managers, engineers, researchers, scientists, financiers, and economists as well as industrialists.



Hybrid Metaheuristics

Hybrid Metaheuristics Author Christian Blum
ISBN-10 9783319308838
Release 2016-05-23
Pages 157
Download Link Click Here

This book explains the most prominent and some promising new, general techniques that combine metaheuristics with other optimization methods. A first introductory chapter reviews the basic principles of local search, prominent metaheuristics, and tree search, dynamic programming, mixed integer linear programming, and constraint programming for combinatorial optimization purposes. The chapters that follow present five generally applicable hybridization strategies, with exemplary case studies on selected problems: incomplete solution representations and decoders; problem instance reduction; large neighborhood search; parallel non-independent construction of solutions within metaheuristics; and hybridization based on complete solution archives. The authors are among the leading researchers in the hybridization of metaheuristics with other techniques for optimization, and their work reflects the broad shift to problem-oriented rather than algorithm-oriented approaches, enabling faster and more effective implementation in real-life applications. This hybridization is not restricted to different variants of metaheuristics but includes, for example, the combination of mathematical programming, dynamic programming, or constraint programming with metaheuristics, reflecting cross-fertilization in fields such as optimization, algorithmics, mathematical modeling, operations research, statistics, and simulation. The book is a valuable introduction and reference for researchers and graduate students in these domains.



Recent Developments in Metaheuristics

Recent Developments in Metaheuristics Author Lionel Amodeo
ISBN-10 9783319582535
Release 2017-09-18
Pages 496
Download Link Click Here

This book highlights state-of-the-art developments in metaheuristics research. It examines all aspects of metaheuristic research including new algorithmic developments, applications, new research challenges, theoretical developments, implementation issues, in-depth experimental studies. The book is divided into two sections. Part I is focused on new optimization and modeling techniques based on metaheuristics. The chapters in this section cover topics from multi-objective problems with fuzzy data with triangular-valued objective functions, to hyper-heuristics optimization methodology, designing genetic algorithms, and also the cuckoo search algorithm. The techniques described help to enhance the usability and increase the potential of metaheuristic algorithms. Part II showcases advanced metaheuristic approaches to solve real-life applications issues. This includes an examination of scheduling, the vehicle routing problem, multimedia sensor network, supplier selection, bin packing, objects tracking, and radio frequency identification. In the fields covered in the chapters are of high-impact applications of metaheuristics. The chapters offer innovative applications of metaheuristics that have a potential of widening research frontiers. Altogether, this book offers a comprehensive look at how researchers are currently using metaheuristics in different domains of design and application.



Nature inspired Metaheuristic Algorithms

Nature inspired Metaheuristic Algorithms Author Xin-She Yang
ISBN-10 9781905986286
Release 2010
Pages 148
Download Link Click Here

Modern metaheuristic algorithms such as bee algorithms and harmony search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms. We also briefly introduce the photosynthetic algorithm, the enzyme algorithm, and Tabu search. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course. As some of the algorithms such as the harmony search and firefly algorithms are at the forefront of current research, this book can also serve as a reference book for researchers.



Engineering Optimization

Engineering Optimization Author Xin-She Yang
ISBN-10 0470640413
Release 2010-07-20
Pages 384
Download Link Click Here

An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.



Trends in Developing Metaheuristics Algorithms and Optimization Approaches

Trends in Developing Metaheuristics  Algorithms  and Optimization Approaches Author Yin, Peng-Yeng
ISBN-10 9781466621466
Release 2012-10-31
Pages 375
Download Link Click Here

Developments in metaheuristics continue to advance computation beyond its traditional methods. With groundwork built on multidisciplinary research findings; metaheuristics, algorithms, and optimization approaches uses memory manipulations in order to take full advantage of strategic level problem solving. Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches provides insight on the latest advances and analysis of technologies in metaheuristics computing. Offering widespread coverage on topics such as genetic algorithms, differential evolution, and ant colony optimization, this book aims to be a forum researchers, practitioners, and students who wish to learn and apply metaheuristic computing.



Nature Inspired Optimization Algorithms

Nature Inspired Optimization Algorithms Author Xin-She Yang
ISBN-10 9780124167452
Release 2014-02-17
Pages 300
Download Link Click Here

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature Provides a theoretical understanding as well as practical implementation hints Provides a step-by-step introduction to each algorithm