Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

 This is an advanced 2001 textbook on modal logic, a field which caught the attention of computer scientists in the late 1970s. Researchers in areas ranging from economics to computational linguistics have since realised its worth. The book is for novices and for more experienced readers, with two distinct tracks clearly signposted at the start of each chapter. The development is mathematical; prior acquaintance with first-order logic and its semantics is assumed, and familiarity with the basic mathematical notions of set theory is required. The authors focus on the use of modal languages as tools to analyze the properties of relational structures, including their algorithmic and algebraic aspects, and applications to issues in logic and computer science such as completeness, computability and complexity are considered. Three appendices supply basic background information and numerous exercises are provided. Ideal for anyone wanting to learn modern modal logic.

 Introduction to proof theory and its applications in mathematical logic, theoretical computer science and artificial intelligence.

 A broad introduction to the subject; many exercises with full solutions are provided.

 This book introduces some extensions of classical first-order logic and applies them to reasoning about computer programs. The extensions considered are: second-order logic, many-sorted logic, w-logic, modal logic type theory and dynamic logic. These have wide applications in various areas of computer science, philosophy, natural language processing and artificial intelligence. Researchers in these areas will find this book a useful introduction and comparative treatment.

 In this text, a variety of modal logics at the sentential, first-order, and second-order levels are developed with clarity, precision and philosophical insight. All of the S1-S5 modal logics of Lewis and Langford, among others, are constructed. A matrix, or many-valued semantics, for sentential modal logic is formalized, and an important result that no finite matrix can characterize any of the standard modal logics is proven. Exercises, some of which show independence results, help to develop logical skills. A separate sentential modal logic of logical necessity in logical atomism is also constructed and shown to be complete and decidable. On the first-order level of the logic of logical necessity, the modal thesis of anti-essentialism is valid and every de re sentence is provably equivalent to a de dicto sentence. An elegant extension of the standard sentential modal logics into several first-order modal logics is developed. Both a first-order modal logic for possibilism containing actualism as a proper part as well as a separate modal logic for actualism alone are constructed for a variety of modal systems. Exercises on this level show the connections between modal laws and quantifier logic regarding generalization into, or out of, modal contexts and the conditions required for the necessity of identity and non-identity. Two types of second-order modal logics, one possibilist and the other actualist, are developed based on a distinction between existence-entailing concepts and concepts in general. The result is a deeper second-order analysis of possibilism and actualism as ontological frameworks. Exercises regarding second-order predicate quantifiers clarify the distinction between existence-entailing concepts and concepts in general. Modal Logic is ideally suited as a core text for graduate and undergraduate courses in modal logic, and as supplementary reading in courses on mathematical logic, formal ontology, and artificial intelligence.

 A comprehensive, modern and technically precise exposition of the theory and main applications of temporal logics in computer science.

 Coinduction is a method for specifying and reasoning about infinite data types and automata with infinite behaviour. In recent years, it has come to play an ever more important role in the theory of computing. It is studied in many disciplines, including process theory and concurrency, modal logic and automata theory. Typically, coinductive proofs demonstrate the equivalence of two objects by constructing a suitable bisimulation relation between them. This collection of surveys is aimed at both researchers and Master's students in computer science and mathematics and deals with various aspects of bisimulation and coinduction, with an emphasis on process theory. Seven chapters cover the following topics: history, algebra and coalgebra, algorithmics, logic, higher-order languages, enhancements of the bisimulation proof method, and probabilities. Exercises are also included to help the reader master new material.

 This is a thorough treatment of first-order modal logic. The book covers such issues as quantification, equality (including a treatment of Frege's morning star/evening star puzzle), the notion of existence, non-rigid constants and function symbols, predicate abstraction, the distinction between nonexistence and nondesignation, and definite descriptions, borrowing from both Fregean and Russellian paradigms.

 The Handbook of Modal Logic contains 20 articles, which collectively introduce contemporary modal logic, survey current research, and indicate the way in which the field is developing. The articles survey the field from a wide variety of perspectives: the underling theory is explored in depth, modern computational approaches are treated, and six major applications areas of modal logic (in Mathematics, Computer Science, Artificial Intelligence, Linguistics, Game Theory, and Philosophy) are surveyed. The book contains both well-written expository articles, suitable for beginners approaching the subject for the first time, and advanced articles, which will help those already familiar with the field to deepen their expertise. Please visit: http://people.uleth.ca/~woods/RedSeriesPromo_WP/PubSLPR.html - Compact modal logic reference - Computational approaches fully discussed - Contemporary applications of modal logic covered in depth

 This book constitutes the refereed proceedings of the 4th International Conference on Algebra and Coalgebra in Computer Science, CALCO 2011, held in Winchester, UK, in August/September 2011. The 21 full papers presented together with 4 invited talks were carefully reviewed and selected from 41 submissions. The papers report results of theoretical work on the mathematics of algebras and coalgebras, the way these results can support methods and techniques for software development, as well as experience with the transfer of the resulting technologies into industrial practice. They cover topics in the fields of abstract models and logics, specialized models and calculi, algebraic and coalgebraic semantics, and system specification and verification. The book also includes 6 papers from the CALCO-tools Workshop, colocated with CALCO 2011 and dedicated to tools based on algebraic and/or coalgebraic principles.

 This book features the refereed proceedings of the 2nd International Symposium on Computer Science in Russia held in September 2007. The 35 papers cover theory track deals with algorithms, protocols, and data structures; complexity and cryptography; formal languages, automata and their applications to computer science; computational models and concepts; proof theory; and applications of logic to computer science. Many applications are presented.

 This book covers the background of classical logic, including the major meta-theorems, and the state of the art in theorem proving.

 In this work, the author provides an introduction to the field of modal logic, outlining its major ideas and emploring the numerous ways in which various academic fields have adopted it.

 The area of coalgebra has emerged within theoretical computer science with a unifying claim: to be the mathematics of computational dynamics. It combines ideas from the theory of dynamical systems and from the theory of state-based computation. Although still in its infancy, it is an active area of research that generates wide interest. Written by one of the founders of the field, this book acts as the first mature and accessible introduction to coalgebra. It provides clear mathematical explanations, with many examples and exercises involving deterministic and non-deterministic automata, transition systems, streams, Markov chains and weighted automata. The theory is expressed in the language of category theory, which provides the right abstraction to make the similarity and duality between algebra and coalgebra explicit, and which the reader is introduced to in a hands-on manner. The book will be useful to mathematicians and (theoretical) computer scientists and will also be of interest to mathematical physicists, biologists and economists.