Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Modeling Uncertainty in the Earth Sciences

Modeling Uncertainty in the Earth Sciences Author Professor Jef Caers
ISBN-10 9781119998716
Release 2011-05-25
Pages 248
Download Link Click Here

Modeling Uncertainty in the Earth Sciences highlights the various issues, techniques and practical modeling tools available for modeling the uncertainty of complex Earth systems and the impact that it has on practical situations. The aim of the book is to provide an introductory overview which covers a broad range of tried-and-tested tools. Descriptions of concepts, philosophies, challenges, methodologies and workflows give the reader an understanding of the best way to make decisions under uncertainty for Earth Science problems. The book covers key issues such as: Spatial and time aspect; large complexity and dimensionality; computation power; costs of 'engineering' the Earth; uncertainty in the modeling and decision process. Focusing on reliable and practical methods this book provides an invaluable primer for the complex area of decision making with uncertainty in the Earth Sciences.



Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses

Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses Author Wenzhong Shi
ISBN-10 1420059289
Release 2009-09-30
Pages 432
Download Link Click Here

When compared to classical sciences such as math, with roots in prehistory, and physics, with roots in antiquity, geographical information science (GISci) is the new kid on the block. Its theoretical foundations are therefore still developing and data quality and uncertainty modeling for spatial data and spatial analysis is an important branch of that theory. Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses outlines the foundational principles and supplies a firm grasp of the disciplines’ theoretical underpinnings. Comprehensive, Systematic Review of Methods for Handling Uncertainties The book summarizes the principles of modeling uncertainty of spatial data and spatial analysis, and then introduces the developed methods for handling uncertainties in spatial data and modeling uncertainties in spatial models. Building on this foundation, the book goes on to explore modeling uncertainties in spatial analyses and describe methods for presentation of data as quality information. Progressing from basic to advanced topics, the organization of the contents reflects the four major theoretical breakthroughs in uncertainty modeling: advances in spatial object representation, uncertainty modeling for static spatial data to dynamic spatial analyses, uncertainty modeling for spatial data to spatial models, and error description of spatial data to spatial data quality control. Determine Fitness-of-Use for Your Applications Modeling uncertainties is essential for the development of geographic information science. Uncertainties always exist in GIS and are then propagated in the results of any spatial analysis. The book delineates how GIS can be a better tool for decision-making and demonstrates how the methods covered can be used to control the data quality of GIS products.



Quantifying Uncertainty in Subsurface Systems

Quantifying Uncertainty in Subsurface Systems Author Céline Scheidt
ISBN-10 9781119325864
Release 2018-05-08
Pages 304
Download Link Click Here

Under the Earth’s surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: • A multi-disciplinary treatment of uncertainty quantification • Case studies with actual data that will appeal to methodology developers • A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors’ Vox: https://eos.org/editors-vox/quantifying-uncertainty-about-earths-resources



Random Field Models in Earth Sciences

Random Field Models in Earth Sciences Author George Christakos
ISBN-10 9781483288307
Release 2013-10-22
Pages 474
Download Link Click Here

This book is about modeling as a prinicipal component of scientific investigations. In general terms, modeling is the funamental process of combining intellectual creativity with physical knowledge and mathematical techniques in order to learn the properties of the mechanisms underlying a physical phenomenon and make predictions. The book focuses on a specific class of models, namely, random field models and certain of their physical applications in the context of a stochastic data analysis and processing research program. The term application is considered here in the sense wherein the mathematical random field model is shaping, but is also being shaped by, its objects. Key Features * This book explores the application of random field models and stochastic data processing to problems in hydrogeology, geostatistics, climate modeling, and oil reservoir engineering, among others Researchers in the geosciences who work with models of natural processes will find discussion of; * Spatiotemporal random fields * Space transformation * Multidimensional estimation * Simulation * Sampling design * Stochastic partial differential equations



Multiple point Geostatistics

Multiple point Geostatistics Author Professor Gregoire Mariethoz
ISBN-10 9781118662755
Release 2014-12-31
Pages 376
Download Link Click Here

Multiple point Geostatistics has been writing in one form or another for most of life. You can find so many inspiration from Multiple point Geostatistics also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Multiple point Geostatistics book for free.



Spatial Modeling Principles in Earth Sciences

Spatial Modeling Principles in Earth Sciences Author Zekai Sen
ISBN-10 9783319417585
Release 2016-09-29
Pages 411
Download Link Click Here

This is a revised and updated second edition, including new chapters on temporal and point uncertainty model, as well as on sampling and deterministic modeling. It is a comprehensive presentation of spatial modeling techniques used in the earth sciences, outlining original techniques developed by the author. Data collection in the earth sciences is difficult and expensive, but simple, rational and logical approaches help the reader to appreciate the fundamentals of advanced methodologies. It requires special care to gather accurate geological, hydrogeological, meteorological and hydrological information all with risk assessments. Spatial simulation methodologies in the earth sciences are essential, then, if we want to understand the variability in features such as fracture frequencies, rock quality, and grain size distribution in rock and porous media. This book outlines in a detailed yet accessible way the main spatial modeling techniques, in particular the Kriging methodology. It also presents many unique physical approaches, field cases, and sample interpretations. Since Kriging’s origin in the 1960s it has been developed into a number of new methods such as cumulative SV (CSV), point CSV (PCSV), and spatial dependence function, which have been applied in different aspects of the earth sciences. Each one of these techniques is explained in this book, as well as how they are used to model earth science phenomena such as geology, earthquakes, meteorology, and hydrology. In addition to Kriging and its variants, several alternatives to Kriging methodology are presented and the necessary steps in their applications are clearly explained. Simple spatial variation prediction methodologies are also revised with up-to-date literature, and the ways in which they relate to more advanced spatial modeling methodologies are explained. The book is a valuable resource for students, researchers and professionals of a broad range of disciplines including geology, geography, hydrology, meteorology, environment, image processing, spatial modeling and related topics. Keywords »Data mining - Geo-statistics - Kriging - Regional uncertainty - Spatial dependence - Spatial modeling - geographic data - geoscience - hydrology - image processing



Sensitivity Analysis in Earth Observation Modelling

Sensitivity Analysis in Earth Observation Modelling Author George Petropoulos
ISBN-10 9780128030318
Release 2016-10-07
Pages 448
Download Link Click Here

Sensitivity Analysis in Earth Observation Modeling highlights the state-of-the-art in ongoing research investigations and new applications of sensitivity analysis in earth observation modeling. In this framework, original works concerned with the development or exploitation of diverse methods applied to different types of earth observation data or earth observation-based modeling approaches are included. An overview of sensitivity analysis methods and principles is provided first, followed by examples of applications and case studies of different sensitivity/uncertainty analysis implementation methods, covering the full spectrum of sensitivity analysis techniques, including operational products. Finally, the book outlines challenges and future prospects for implementation in earth observation modeling. Information provided in this book is of practical value to readers looking to understand the principles of sensitivity analysis in earth observation modeling, the level of scientific maturity in the field, and where the main limitations or challenges are in terms of improving our ability to implement such approaches in a wide range of applications. Readers will also be informed on the implementation of sensitivity/uncertainty analysis on operational products available at present, on global and continental scales. All of this information is vital in the selection process of the most appropriate sensitivity analysis method to implement. Outlines challenges and future prospects of sensitivity analysis implementation in earth observation modeling Provides readers with a roadmap for directing future efforts Includes case studies with applications from different regions around the globe, helping readers to explore strengths and weaknesses of the different methods in earth observation modeling Presents a step-by-step guide, providing the principles of each method followed by the application of variants, making the reference easy to use and follow



Natural Hazard Uncertainty Assessment

Natural Hazard Uncertainty Assessment Author Karin Riley
ISBN-10 9781119027867
Release 2016-12-12
Pages 360
Download Link Click Here

Uncertainties are pervasive in natural hazards, and it is crucial to develop robust and meaningful approaches to characterize and communicate uncertainties to inform modeling efforts. In this monograph we provide a broad, cross-disciplinary overview of issues relating to uncertainties faced in natural hazard and risk assessment. We introduce some basic tenets of uncertainty analysis, discuss issues related to communication and decision support, and offer numerous examples of analyses and modeling approaches that vary by context and scope. Contributors include scientists from across the full breath of the natural hazard scientific community, from those in real-time analysis of natural hazards to those in the research community from academia and government. Key themes and highlights include: Substantial breadth and depth of analysis in terms of the types of natural hazards addressed, the disciplinary perspectives represented, and the number of studies included Targeted, application-centered analyses with a focus on development and use of modeling techniques to address various sources of uncertainty Emphasis on the impacts of climate change on natural hazard processes and outcomes Recommendations for cross-disciplinary and science transfer across natural hazard sciences This volume will be an excellent resource for those interested in the current work on uncertainty classification/quantification and will document common and emergent research themes to allow all to learn from each other and build a more connected but still diverse and ever growing community of scientists.



Uncertainties in Environmental Modelling and Consequences for Policy Making

Uncertainties in Environmental Modelling and Consequences for Policy Making Author Philippe Baveye
ISBN-10 9789048126361
Release 2009-05-14
Pages 401
Download Link Click Here

Mathematical modelling has become in recent years an essential tool for the prediction of environmental change and for the development of sustainable policies. Yet, many of the uncertainties associated with modelling efforts appear poorly understood by many, especially by policy makers. This book attempts for the first time to cover the full range of issues related to model uncertainties, from the subjectivity of setting up a conceptual model of a given system, all the way to communicating the nature of model uncertainties to non-scientists and accounting for model uncertainties in policy decisions. Theoretical chapters, providing background information on specific steps in the modelling process and in the adoption of models by end-users, are complemented by illustrative case studies dealing with soils and global climate change. All the chapters are authored by recognized experts in their respective disciplines, and provide a timely and uniquely comprehensive coverage of an important field.



Reservoir Model Design

Reservoir Model Design Author Philip Ringrose
ISBN-10 9789400754973
Release 2014-10-03
Pages 249
Download Link Click Here

This book gives practical advice and ready to use tips on the design and construction of subsurface reservoir models. The design elements cover rock architecture, petrophysical property modelling, multi-scale data integration, upscaling and uncertainty analysis. Philip Ringrose and Mark Bentley share their experience, gained from over a hundred reservoir modelling studies in 25 countries covering clastic, carbonate and fractured reservoir types. The intimate relationship between geology and fluid flow is explored throughout, showing how the impact of fluid type, production mechanism and the subtleties of single- and multi-phase flow combine to influence reservoir model design. Audience: The main audience for this book is the community of applied geoscientists and engineers involved in the development and use of subsurface fluid resources. The book is suitable for a range of Master’s level courses in reservoir characterisation, modelling and engineering. · Provides practical advice and guidelines for users of 3D reservoir modelling packages · Gives advice on reservoir model design for the growing world-wide activity in subsurface reservoir modelling · Covers rock modelling, property modelling, upscaling and uncertainty handling · Encompasses clastic, carbonate and fractured reservoirs



Reservoir Modelling

Reservoir Modelling Author Steve Cannon
ISBN-10 9781119313441
Release 2018-02-01
Pages 328
Download Link Click Here

The essential resource to an integrated approach to reservoir modelling by highlighting both the input of data and the modelling results Reservoir Modelling offers a comprehensive guide to the procedures and workflow for building a 3-D model. Designed to be practical, the principles outlined can be applied to any modelling project regardless of the software used. The author — a noted practitioner in the field — captures the heterogeneity due to structure, stratigraphy and sedimentology that has an impact on flow in the reservoir. This essential guide follows a general workflow from data QC and project management, structural modelling, facies and property modelling to upscaling and the requirements for dynamic modelling. The author discusses structural elements of a model and reviews both seismic interpretation and depth conversion, which are known to contribute most to volumetric uncertainty and shows how large-scale stratigraphic relationships are integrated into the reservoir framework. The text puts the focus on geostatistical modelling of facies and heterogeneities that constrain the distribution of reservoir properties including porosity, permeability and water saturation. In addition, the author discusses the role of uncertainty analysis in the static model and its impact on volumetric estimation. The text also addresses some typical approaches to modelling specific reservoirs through a mix of case studies and illustrative examples and: Offers a practical guide to the use of data to build a successful reservoir model Draws on the latest advances in 3-D modelling software Reviews facies modelling, the different methods and the need for understanding the geological interpretation of cores and logs Presents information on upscaling both the structure and the properties of a fine-scale geological model for dynamic simulation Stresses the importance of an interdisciplinary team-based approach Written for geophysicists, reservoir geologists and petroleum engineers, Reservoir Modelling offers the essential information needed to understand a reservoir for modelling and contains the multidisciplinary nature of a reservoir modelling project.



Value of Information in the Earth Sciences

Value of Information in the Earth Sciences Author Jo Eidsvik
ISBN-10 9781316432129
Release 2015-11-19
Pages
Download Link Click Here

Gathering the right kind and the right amount of information is crucial for any decision-making process. This book presents a unified framework for assessing the value of potential data gathering schemes by integrating spatial modelling and decision analysis, with a focus on the Earth sciences. The authors discuss the value of imperfect versus perfect information, and the value of total versus partial information, where only subsets of the data are acquired. Concepts are illustrated using a suite of quantitative tools from decision analysis, such as decision trees and influence diagrams, as well as models for continuous and discrete dependent spatial variables, including Bayesian networks, Markov random fields, Gaussian processes, and multiple-point geostatistics. Unique in scope, this book is of interest to students, researchers and industry professionals in the Earth and environmental sciences, who use applied statistics and decision analysis techniques, and particularly to those working in petroleum, mining, and environmental geoscience.



Demystifying Climate Models

Demystifying Climate Models Author Andrew Gettelman
ISBN-10 9783662489598
Release 2016-04-09
Pages 274
Download Link Click Here

This book demystifies the models we use to simulate present and future climates, allowing readers to better understand how to use climate model results. In order to predict the future trajectory of the Earth’s climate, climate-system simulation models are necessary. When and how do we trust climate model predictions? The book offers a framework for answering this question. It provides readers with a basic primer on climate and climate change, and offers non-technical explanations for how climate models are constructed, why they are uncertain, and what level of confidence we should place in them. It presents current results and the key uncertainties concerning them. Uncertainty is not a weakness but understanding uncertainty is a strength and a key part of using any model, including climate models. Case studies of how climate model output has been used and how it might be used in the future are provided. The ultimate goal of this book is to promote a better understanding of the structure and uncertainties of climate models among users, including scientists, engineers and policymakers.



Fuzzy Logic in Geology

Fuzzy Logic in Geology Author Robert V. Demicco
ISBN-10 0080521894
Release 2003-10-20
Pages 347
Download Link Click Here

What is fuzzy logic?--a system of concepts and methods for exploring modes of reasoning that are approximate rather than exact. While the engineering community has appreciated the advances in understanding using fuzzy logic for quite some time, fuzzy logic's impact in non-engineering disciplines is only now being recognized. The authors of Fuzzy Logic in Geology attend to this growing interest in the subject and introduce the use of fuzzy set theory in a style geoscientists can understand. This is followed by individual chapters on topics relevant to earth scientists: sediment modeling, fracture detection, reservoir characterization, clustering in geophysical data analysis, ground water movement, and time series analysis. George Klir is the Distinguished Professor of Systems Science and Director of the Center for Intelligent Systems, Fellow of the IEEE and IFSA, editor of nine volumes, editorial board member of 18 journals, and author or co-author of 16 books Foreword by the inventor of fuzzy logic-- Professor Lotfi Zadeh



Geostatistical Reservoir Modeling

Geostatistical Reservoir Modeling Author Michael J. Pyrcz
ISBN-10 9780199358830
Release 2014-04-16
Pages 496
Download Link Click Here

Published in 2002, the first edition of Geostatistical Reservoir Modeling brought the practice of petroleum geostatistics into a coherent framework, focusing on tools, techniques, examples, and guidance. It emphasized the interaction between geophysicists, geologists, and engineers, and was received well by professionals, academics, and both graduate and undergraduate students. In this revised second edition, Deutsch collaborates with co-author Michael Pyrcz to provide an expanded (in coverage and format), full color illustrated, more comprehensive treatment of the subject with a full update on the latest tools, methods, practice, and research in the field of petroleum Geostatistics. Key geostatistical concepts such as integration of geologic data and concepts, scale considerations, and uncertainty models receive greater attention, and new comprehensive sections are provided on preliminary geological modeling concepts, data inventory, conceptual model, problem formulation, large scale modeling, multiple point-based simulation and event-based modeling. Geostatistical methods are extensively illustrated through enhanced schematics, work flows and examples with discussion on method capabilities and selection. For example, this expanded second edition includes extensive discussion on the process of moving from an inventory of data and concepts through conceptual model to problem formulation to solve practical reservoir problems. A greater number of examples are included, with a set of practical geostatistical studies developed to illustrate the steps from data analysis and cleaning to post-processing, and ranking. New methods, which have developed in the field since the publication of the first edition, are discussed, such as models for integration of diverse data sources, multiple point-based simulation, event-based simulation, spatial bootstrap and methods to summarize geostatistical realizations.



Modeling Uncertainty in Metric Space

Modeling Uncertainty in Metric Space Author
ISBN-10 STANFORD:bx456dh2312
Release 2011
Pages
Download Link Click Here

Modeling uncertainty for future prediction requires drawing multiple posterior models. Such drawing within a Bayesian framework is dependent on the likelihood (data-model relationship) as well as prior distribution of the model variables, For the uncertainty assessment in the Earth models, we propose the framework of Modeling Uncertainty in Metric Space (MUMS) to achieve this in a general way. MUMS constructs a metric space where the models are represented exclusively by a distance correlated with or equal to the difference in their responses (application-tailored distance). In the framework of MUMS, various operations are available: projection of metric space by multi-dimensional scaling, model expansion by kernel Karhunen-Loeve expansion, generation of additional prior model by solving the pre-image problem, and generation of multiple posterior models by solving the post-image problem. We propose a robust solution for the pre-image problem: geologically constrained optimization, which utilizes the probability perturbation method from the solution of the fixed-point iteration algorithm. Additionally, we introduce a so-called post-image problem for obtaining the feature expansion of the ''true Earth'' by defining a distance as the difference in their responses. The combination of geologically constrained optimization and the post-image problem efficiently generates multiple posterior Earth models constrained to prior geologic information, hard data, and nonlinear time-dependent data. The proposed method provides a realistic uncertainty model for future prediction, compared with the result of the rejection sampler. We also propose a metric ensemble Kalman filter (Metric EnKF), which applies the ensemble Kalman filter (EnKF) to the parameterizations by the kernel KL expansion in metric space. Metric EnKF overcomes some critical limitations of EnKF: it preserves prior geologic information; it creates a stable and consistent filtering. However, the results of Metric EnKF applied to various cases including the Brugge field-scale synthetic reservoir show the same problem as with the EnKF in general, that is, it does not provide a realistic uncertainty model.



Effective Parameters of Hydrogeological Models

Effective Parameters of Hydrogeological Models Author Vikenti Gorokhovski
ISBN-10 9783319035697
Release 2014-01-07
Pages 182
Download Link Click Here

Geological models used in predictive hydrogeological modeling are not exact replicas of the objects they represent: many details related to structures and properties of the objects remain unknown. Those details may considerably affect simulation results. A provable evaluation of the uncertainty of hydrogeological and solute transport simulations are almost impossible. In this book the author describes how to obtain the best-possible results in simulations, based on the available data and predefined criteria that are turned into transforming mechanisms. The latter are mathematical expressions for evaluating model parameters supporting effective simulations. Examples of the mechanisms as well as methods of their evaluation are provided in this book. It is also shown how these mechanisms can be used for the interpretation of hydrogeological data. The first edition of this book was published in the series Springer Briefs in Earth Sciences.