Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Molecular Fluorescence

Molecular Fluorescence Author Bernard Valeur
ISBN-10 9783527650026
Release 2013-03-27
Pages 500
Download Link Click Here

This second edition of the well-established bestseller is completely updated and revised with approximately 30 % additional material, including two new chapters on applications, which has seen the most significant developments. The comprehensive overview written at an introductory level covers fundamental aspects, principles of instrumentation and practical applications, while providing many valuable tips. For photochemists and photophysicists, physical chemists, molecular physicists, biophysicists, biochemists and biologists, lecturers and students of chemistry, physics, and biology.

Molecular Fluorescence

Molecular Fluorescence Author Bernard Valeur
ISBN-10 9783527328376
Release 2012-05-29
Pages 569
Download Link Click Here

This second edition of the well-established bestseller is completely updated and revised with approximately 30 % additional material, including two new chapters on applications, which has seen the most significant developments. The comprehensive overview written at an introductory level covers fundamental aspects, principles of instrumentation and practical applications, while providing many valuable tips. For photochemists and photophysicists, physical chemists, molecular physicists, biophysicists, biochemists and biologists, lecturers and students of chemistry, physics, and biology.

Molecular Fluorescence

Molecular Fluorescence Author Bernard Valeur
ISBN-10 OCLC:1045509607
Release 2013
Pages 569
Download Link Click Here

Molecular Fluorescence has been writing in one form or another for most of life. You can find so many inspiration from Molecular Fluorescence also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Molecular Fluorescence book for free.

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy Author Joseph R. Lakowicz
ISBN-10 9781475730616
Release 2013-04-17
Pages 698
Download Link Click Here

`In the second edition of Principles I have attempted to maintain the emphasis on basics, while updating the examples to include more recent results from the literature. There is a new chapter providing an overview of extrinisic fluorophores. The discussion of timeresolved measurements has been expanded to two chapters. Quenching has also been expanded in two chapters. Energy transfer and anisotropy have each been expanded to three chapters. There is also a new chapter on fluorescence sensing. To enhance the usefulness of this book as a textbook, most chapters are followed by a set of problems. Sections which describe advanced topics are indicated as such, to allow these sections to be skipped in an introduction course. Glossaries are provided for commonly used acronyms and mathematical symbols. For those wanting additional informtion, the final appendix contains a list of recommended books which expand on various specialized topics.' from the author's Preface

Principles and Applications of Fluorescence Spectroscopy

Principles and Applications of Fluorescence Spectroscopy Author Jihad Rene Albani
ISBN-10 9780470691335
Release 2008-04-15
Pages 264
Download Link Click Here

Fluorescence spectroscopy is an important investigational tool in many areas of analytical science, due to its extremely high sensitivity and selectivity. With many uses across a broad range of chemical, biochemical and medical research, it has become an essential investigational technique allowing detailed, real-time observation of the structure and dynamics of intact biological systems with extremely high resolution. It is particularly heavily used in the pharmaceutical industry where it has almost completely replaced radiochemical labelling. Principles and Applications of Fluorescence Spectroscopy gives the student and new user the essential information to help them to understand and use the technique confidently in their research. By integrating the treatment of absorption and fluorescence, the student is shown how fluorescence phenomena arise and how these can be used to probe a range of analytical problems. A key element of the book is the inclusion of practical laboratory experiments that illustrate the fundamental points and applications of the technique.

Fluorescence and Phosphorescence Spectroscopy

Fluorescence and Phosphorescence Spectroscopy Author Stephen G Schulman
ISBN-10 9781483160993
Release 2013-10-22
Pages 298
Download Link Click Here

Fluorescence and Phosphorescence Spectroscopy: Physicochemical Principles and Practice deals with the physicochemical principles and applications of fluorescence and phosphorescence spectroscopy in experimental biology and chemistry. Topics covered include the absorption of light by molecules; instrumentation for the measurement of fluorescence and phosphorescence; solvent and acidity effects on electronic spectra; and polarization of fluorescence and phosphorescence. Comprised of four chapters, this book begins with a discussion on photophysical processes in isolated molecules and molecules in solution, paying particular attention to thermal equilibration of electronically excited molecules, phototautomerism, and coordination by metal ions. The next chapter describes the instrumentation for measuring fluorescence and phosphorescence, which consists essentially of a light source to electronically excite the sample; a monochromator to separate the light of desired energy from the source; a sample compartment; a second monochromator to isolate the sample's fluorescence energy from the excitation energy; a photodetector to translate the fluorescent light into an electrical signal; and a readout system such as a galvanometer or a recorder, coupled with an amplifier to determine the intensity of fluorescent light that is emitted. The final chapter is devoted to various applications of fluorescence and phosphorescence spectroscopy, including the analysis of organic and inorganic compounds. This monograph is written primarily for analytical chemists and biological scientists.

Fluorescence Microscopy

Fluorescence Microscopy Author Ulrich Kubitscheck
ISBN-10 9783527671618
Release 2013-04-02
Pages 539
Download Link Click Here

A comprehensive introduction to advanced fluorescence microscopy methods and their applications. This is the first title on the topic designed specifically to allow students and researchers with little background in physics to understand both microscopy basics and novel light microscopy techniques. The book is written by renowned experts and pioneers in the field with a rather intuitive than formal approach. It always keeps the nonexpert reader in mind, making even unavoidable complex theoretical concepts readily accessible. All commonly used methods are covered. A companion website with additional references, examples and video material makes this a valuable teaching resource:

Introduction to Fluorescence

Introduction to Fluorescence Author David M. Jameson
ISBN-10 9781439806050
Release 2014-01-22
Pages 313
Download Link Click Here

The phenomenon known as fluorescence is now widely used in the chemical and life sciences largely due to the development of highly sophisticated fluorescent probe chemistries and the commercial availability of these probes as well as the development of novel microscopy approaches. Introduction to Fluorescence helps readers acquire a sound understanding of basic fluorescence theory and practice. It describes general principles in a straightforward way and uses examples from a variety of disciplines to demonstrate them. In color throughout, the book takes readers through the history of important discoveries to the most current advances. It introduces the fundamentals of the fluorescence phenomenon and gives detailed examples of fluorescence applications in the molecular life sciences, including biochemistry, biophysics, clinical chemistry and diagnostics, pharmaceutical science, and cell and molecular biology. The author presents the basic theories underlying the applications and offers in-depth information on practical aspects. Along with a list of references in each chapter, the text incorporates more than 250 figures that clearly illustrate the concepts and gives the chemical structures of the most widely used fluorescent molecules. In addition, the appendix provides a "Rogue’s Gallery" of the most common errors and pitfalls to avoid.

Fluorescence Lifetime Spectroscopy and Imaging

Fluorescence Lifetime Spectroscopy and Imaging Author Laura Marcu
ISBN-10 9781439861677
Release 2014-07-17
Pages 570
Download Link Click Here

During the past two decades, there has been an increasing appreciation of the significant value that lifetime-based techniques can add to biomedical studies and applications of fluorescence. Bringing together perspectives of different research communities, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics explores the remarkable advances in time-resolved fluorescence techniques and their role in a wide range of biological and clinical applications. Broadly accessible, the book captures the state-of-the-art of fluorescence lifetime metrology and imaging and provides current perspectives on their applications to biomedical studies of intact tissues and medical diagnosis. The text introduces these techniques within the wider context of fluorescence spectroscopy and describes basic principles underlying current instrumentation for fluorescence lifetime imaging and metrology (FLIM). It also covers the wide range of methods, including single channel (point) spectroscopy, fluorescence lifetime imaging microscopy, and single- and multi-photon excitation. Edited by pioneers in this field, with contributions from leading experts, the book includes an overview of complementary techniques that help researchers beginning FLIM research. It offers a comprehensive treatment of fundamental principles, instrumentation, analytical methods, and applications. It also provides an overview of the label-free contrast available from lifetime measurements of tissue autofluorescence and the prospects for exploiting this for clinical applications and biomedical research including drug discovery.

Handbook of Fluorescence Spectroscopy and Imaging

Handbook of Fluorescence Spectroscopy and Imaging Author Markus Sauer
ISBN-10 9783527633524
Release 2010-12-23
Pages 280
Download Link Click Here

Providing much-needed information on fluorescence spectroscopy and microscopy, this ready reference covers detection techniques, data registration, and the use of spectroscopic tools, as well as new techniques for improving the resolution of optical microscopy below the resolution gap. Starting with the basic principles, the book goes on to treat fluorophores and labeling, single-molecule fluorescence spectroscopy and enzymatics, as well as excited state energy transfer, and super-resolution fluorescence imaging. Examples show how each technique can help in obtaining detailed and refined information from individual molecular systems.

Fluorescent and Luminescent Probes for Biological Activity

Fluorescent and Luminescent Probes for Biological Activity Author W. T. Mason
ISBN-10 9780080531779
Release 1999-04-16
Pages 647
Download Link Click Here

The use of fluorescent and luminescent probes to measure biological function has increased dramatically since publication of the First Edition due to their improved speed, safety, and power of analytical approach. This eagerly awaited Second Edition, also edited by Bill Mason, contains 19 new chapters and over two thirds new material, and is a must for all life scientists using optical probes. The contents include discussion of new optical methodologies for detection of proteins, DNA and other molecules, as well as probes for ions, receptors, cellular components, and gene expression. Emerging and advanced technologies for probe detection such as confocal laser scanning microscopy are also covered. This book will be essential for those embarking on work in the field or using new methods to enhance their research. TOPICS COVERED: * Single and multiphoton confocal microscopy * Applications of green fluorescent protein and chemiluminescent reporters to gene expression studies * Applications of new optical probes for imaging proteins in gels * Probes and detection technologies for imaging membrane potential in live cells * Use of optical probes to detect microorganisms * Raman and confocal raman microspectroscopy * Fluorescence lifetime imaging microscopy * Digital CCD cameras and their application in biological microscopy

Insect Molecular Genetics

Insect Molecular Genetics Author Marjorie A. Hoy
ISBN-10 9780240821313
Release 2013-04-09
Pages 838
Download Link Click Here

Insect Molecular Genetics, Third Edition, summarizes and synthesizes two rather disparate disciplines—entomology and molecular genetics. This volume provides an introduction to the techniques and literature of molecular genetics; defines terminology; and reviews concepts, principles, and applications of these powerful tools. The world of insect molecular genetics, once dominated by Drosophila, has become much more diverse, especially with the sequencing of multiple arthropod genomes (from spider mites to mosquitoes). This introduction includes discussion of honey bees, mosquitoes, flour beetles, silk moths, fruit flies, aphids, house flies, kissing bugs, cicadas, butterflies, tsetse flies and armyworms. This book serves as both a foundational text and a review of a rapidly growing literature. With fully revised and updated chapters, the third edition will be a valuable addition to the personal libraries of entomologists, geneticists, and molecular biologists. Up-to-date references to important review articles, websites, and seminal citations in the disciplines Well crafted and instructive illustrations integral to explaining the techniques of molecular genetics Glossary of terms to help beginners learn the vocabulary of molecular biology

Fluorescence Applications in Biotechnology and Life Sciences

Fluorescence Applications in Biotechnology and Life Sciences Author Ewa M. Goldys
ISBN-10 9780470083703
Release 2009-08-24
Pages 367
Download Link Click Here

Fluorescence Applications in Biotechnology and the Life Sciences Edited by Ewa M. Goldys A self-contained treatment of the latest fluorescence applications in biotechnology and the life sciences Fluorescence Applications in Biotechnology and the Life Sciences is the first reference in this important subject area to focus specifically on the present applications of fluorescence in molecular and cellular dynamics, biological/medical imaging, proteomics, genomics, and flow cytometry. It is designed to raise awareness of the latest scientific approaches and technologies that may help resolve problems relevant for the industry and the community in areas such as public health, food safety, and environ-mental monitoring. Following an introductory chapter on the basics of fluorescence, the book covers: labeling of cells with fluorescent dyes; genetically encoded fluorescent proteins; nanoparticle fluorescence probes; quantitative analysis of fluorescent images; spectral imaging and unmixing; correlation of light with electron microscopy; fluorescence resonance energy transfer and applications; monitoring molecular dynamics in live cells using fluorescence photo-bleaching; time-resolved fluorescence in microscopy; fluorescence correlation spectroscopy; flow cytometry; fluorescence in diagnostic imaging; fluorescence in clinical diagnoses; immunochemical detection of analytes by using fluorescence; membrane organization; and probing the kinetics of ion pumps via voltage-sensitive fluorescent dyes. With its multidisciplinary approach and excellent balance of research and diagnostic topics, this book will appeal to postgraduate students and a broad range of scientists and researchers in biology, physics, chemistry, biotechnology, bioengineering, and medicine.

Molecular Sensors and Nanodevices

Molecular Sensors and Nanodevices Author John X J Zhang
ISBN-10 9781455776764
Release 2013-12-03
Pages 512
Download Link Click Here

With applications ranging from medical diagnostics to environmental monitoring, molecular sensors (also known as biosensors, chemical sensors, or chemosensors), along with emerging nanotechnologies offer not only valuable tools but also unlimited possibilities for engineers and scientists to explore the world. New generation of functional microsystems can be designed to provide a variety of small scale sensing, imaging and manipulation techniques to the fundamental building blocks of materials. This book provides comprehensive coverage of the current and emerging technologies of molecular sensing, explaining the principles of molecular sensor design and assessing the sensor types currently available. Having explained the basic sensor structures and sensing principles, the authors proceed to explain the role of nano/micro fabrication techniques in molecular sensors, including MEMS, BioMEMS, MicroTAS among others. The miniaturization of versatile molecular sensors opens up a new design paradigm and a range of novel biotechnologies, which is illustrated through case studies of groundbreaking applications in the life sciences and elsewhere. As well as the techniques and devices themselves, the authors also cover the critical issues of implantability, biocompatibility and the regulatory framework. The book is aimed at a broad audience of engineering professionals, life scientists and students working in the multidisciplinary area of biomedical engineering. It explains essential principles of electrical, chemical, optical and mechanical engineering as well as biomedical science, intended for readers with a variety of scientific backgrounds. In addition, it will be valuable for medical professionals and researchers. An online tutorial developed by the authors provides learning reinforcement for students and professionals alike. Reviews of state-of-the-art molecular sensors and nanotechnologies Explains principles of sensors and fundamental theories with homework problems at the end of each chapter to facilitate learning Demystifies the vertical integration from nanomaterials to devices design Covers practical applications the recent progress in state-of-the-art sensor technologies Includes case studies of important commercial products Covers the critical issues of implantability, biocompatibility and the regulatory framework

Introduction to Fluorescence Sensing

Introduction to Fluorescence Sensing Author Alexander P. Demchenko
ISBN-10 9783319207803
Release 2015-10-06
Pages 794
Download Link Click Here

Fluorescence is the most popular technique in chemical and biological sensing and this book provides systematic knowledge of basic principles in the design of fluorescence sensing and imaging techniques together with critical analysis of recent developments. Its ultimate sensitivity, high temporal and spatial resolution and versatility enables high resolution imaging within living cells. It develops rapidly in the directions of constructing new molecular recognition units, new fluorescence reporters and in improving sensitivity of response, up to the detection of single molecules. Its application areas range from the control of industrial processes to environmental monitoring and clinical diagnostics. Being a guide for students and young researchers, it also addresses professionals involved in basic and applied research. Making a strong link between education, research and product development, this book discusses prospects for future progress.


Chemosensors Author Binghe Wang
ISBN-10 1118019571
Release 2011-08-24
Pages 416
Download Link Click Here

A thorough, accessible, and general overview of chemosensors Providing a comprehensive overview of chemosensors—organic molecules designed to bind and sense small molecules or metal ions—and their applications, Chemosensors: Principles, Strategies, and Applications is an accessible one-stop resource for analysts, clinicians, and graduate students studying advanced chemistry and chemosensing. Chemosensors function on a molecular level, generating a signal upon binding. The book reviews their synthesis, design, and applications for detecting biological and organic molecules as well as metal ions. The text highlights applications in drug discovery and catalyses that have not been well covered elsewhere. Covering such topics as molecular recognition, detection methods, design strategies, and important biological issues, the book is broken into four sections that examine intermolecular interactions, strategies in sensor design, detection methods, and case studies in metal, saccharide, and amino acid sensing. An indispensable source of information for chemical and biomedical experts using sensors, Chemosensors includes case studies to make the material both accessible and understandable to chemists of all backgrounds.

Single Molecule Science

Single Molecule Science Author Dmitrii E. Makarov
ISBN-10 9781466559523
Release 2015-06-09
Pages 214
Download Link Click Here

The observation and manipulation of individual molecules is one of the most exciting developments in modern molecular science. Single Molecule Science: Physical Principles and Models provides an introduction to the mathematical tools and physical theories needed to understand, explain, and model single-molecule observations. This book explains the physical principles underlying the major classes of single-molecule experiments such as fluorescence measurements, force-probe spectroscopy, and nanopore experiments. It provides the framework needed to understand single-molecule phenomena by introducing all the relevant mathematical and physical concepts, and then discussing various approaches to the problem of interpreting single-molecule data. The essential concepts used throughout this book are explained in the appendices and the text does not assume any background beyond undergraduate chemistry, physics, and calculus. Every effort has been made to keep the presentation self-contained and derive results starting from a limited set of fundamentals, such as several simple models of molecular dynamics and the laws of probability. The result is a book that develops essential concepts in a simple yet rigorous way and in a manner that is accessible to a broad audience.