Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Monte Carlo Methods in Bayesian Computation

Monte Carlo Methods in Bayesian Computation Author Ming-Hui Chen
ISBN-10 9781461212768
Release 2012-12-06
Pages 387
Download Link Click Here

Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners.

Monte Carlo Strategies in Scientific Computing

Monte Carlo Strategies in Scientific Computing Author Jun S. Liu
ISBN-10 9780387763712
Release 2013-11-11
Pages 344
Download Link Click Here

This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.

Monte Carlo Statistical Methods

Monte Carlo Statistical Methods Author Christian Robert
ISBN-10 9781475741452
Release 2013-03-14
Pages 649
Download Link Click Here

We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.

Bayesian Computation with R

Bayesian Computation with R Author Jim Albert
ISBN-10 9780387922980
Release 2009-04-20
Pages 300
Download Link Click Here

There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN).

Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R Author Christian Robert
ISBN-10 9781441915757
Release 2009-12-10
Pages 284
Download Link Click Here

This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.

Bayesian Core A Practical Approach to Computational Bayesian Statistics

Bayesian Core  A Practical Approach to Computational Bayesian Statistics Author Jean-Michel Marin
ISBN-10 9780387389790
Release 2007-02-06
Pages 255
Download Link Click Here

This Bayesian modeling book is intended for practitioners and applied statisticians looking for a self-contained entry to computational Bayesian statistics. Focusing on standard statistical models, it provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical justifications.

The Bayesian Choice

The Bayesian Choice Author Christian Robert
ISBN-10 9780387715995
Release 2007-05-19
Pages 606
Download Link Click Here

This is an introduction to Bayesian statistics and decision theory, including advanced topics such as Monte Carlo methods. This new edition contains several revised chapters and a new chapter on model choice.

Markov Chain Monte Carlo

Markov Chain Monte Carlo Author Dani Gamerman
ISBN-10 9781482296426
Release 2006-05-10
Pages 342
Download Link Click Here

While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More importantly, the self-explanatory nature of the codes will enable modification of the inputs to the codes and variation on many directions will be available for further exploration. Major changes from the previous edition: · More examples with discussion of computational details in chapters on Gibbs sampling and Metropolis-Hastings algorithms · Recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection · Discussion of computation using both R and WinBUGS · Additional exercises and selected solutions within the text, with all data sets and software available for download from the Web · Sections on spatial models and model adequacy The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. The book will appeal to everyone working with MCMC techniques, especially research and graduate statisticians and biostatisticians, and scientists handling data and formulating models. The book has been substantially reinforced as a first reading of material on MCMC and, consequently, as a textbook for modern Bayesian computation and Bayesian inference courses.

A First Course in Bayesian Statistical Methods

A First Course in Bayesian Statistical Methods Author Peter D. Hoff
ISBN-10 0387924078
Release 2009-06-02
Pages 272
Download Link Click Here

A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

Random Number Generation and Monte Carlo Methods

Random Number Generation and Monte Carlo Methods Author James E. Gentle
ISBN-10 9781475729603
Release 2013-03-14
Pages 247
Download Link Click Here

Monte Carlo simulation has become one of the most important tools in all fields of science. This book surveys the basic techniques and principles of the subject, as well as general techniques useful in more complicated models and in novel settings. The emphasis throughout is on practical methods that work well in current computing environments.

Bayesian Reliability

Bayesian Reliability Author Michael S. Hamada
ISBN-10 9780387779508
Release 2008-08-15
Pages 436
Download Link Click Here

Bayesian Reliability presents modern methods and techniques for analyzing reliability data from a Bayesian perspective. The adoption and application of Bayesian methods in virtually all branches of science and engineering have significantly increased over the past few decades. This increase is largely due to advances in simulation-based computational tools for implementing Bayesian methods. The authors extensively use such tools throughout this book, focusing on assessing the reliability of components and systems with particular attention to hierarchical models and models incorporating explanatory variables. Such models include failure time regression models, accelerated testing models, and degradation models. The authors pay special attention to Bayesian goodness-of-fit testing, model validation, reliability test design, and assurance test planning. Throughout the book, the authors use Markov chain Monte Carlo (MCMC) algorithms for implementing Bayesian analyses -- algorithms that make the Bayesian approach to reliability computationally feasible and conceptually straightforward. This book is primarily a reference collection of modern Bayesian methods in reliability for use by reliability practitioners. There are more than 70 illustrative examples, most of which utilize real-world data. This book can also be used as a textbook for a course in reliability and contains more than 160 exercises. Noteworthy highlights of the book include Bayesian approaches for the following: Goodness-of-fit and model selection methods Hierarchical models for reliability estimation Fault tree analysis methodology that supports data acquisition at all levels in the tree Bayesian networks in reliability analysis Analysis of failure count and failure time data collected from repairable systems, and the assessment of various related performance criteria Analysis of nondestructive and destructive degradation data Optimal design of reliability experiments Hierarchical reliability assurance testing

Bayesian Theory and Applications

Bayesian Theory and Applications Author David A. Stephens
ISBN-10 9780199695607
Release 2013-01-24
Pages 702
Download Link Click Here

This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.

Handbook of Computational Statistics

Handbook of Computational Statistics Author James E. Gentle
ISBN-10 9783642215513
Release 2012-07-06
Pages 1192
Download Link Click Here

The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.

Mathematical Foundations of Speech and Language Processing

Mathematical Foundations of Speech and Language Processing Author Mark Johnson
ISBN-10 9781441990174
Release 2012-12-06
Pages 289
Download Link Click Here

Speech and language technologies continue to grow in importance as they are used to create natural and efficient interfaces between people and machines, and to automatically transcribe, extract, analyze, and route information from high-volume streams of spoken and written information. The workshops on Mathematical Foundations of Speech Processing and Natural Language Modeling were held in the Fall of 2000 at the University of Minnesota's NSF-sponsored Institute for Mathematics and Its Applications, as part of a "Mathematics in Multimedia" year-long program. Each workshop brought together researchers in the respective technologies on the one hand, and mathematicians and statisticians on the other hand, for an intensive week of cross-fertilization. There is a long history of benefit from introducing mathematical techniques and ideas to speech and language technologies. Examples include the source-channel paradigm, hidden Markov models, decision trees, exponential models and formal languages theory. It is likely that new mathematical techniques, or novel applications of existing techniques, will once again prove pivotal for moving the field forward. This volume consists of original contributions presented by participants during the two workshops. Topics include language modeling, prosody, acoustic-phonetic modeling, and statistical methodology.

An Introduction to Statistical Computing

An Introduction to Statistical Computing Author Jochen Voss
ISBN-10 9781118728024
Release 2013-08-28
Pages 400
Download Link Click Here

A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems. Sampling-based simulation techniques are now an invaluable tool for exploring statistical models. This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods. It also includes some advanced methods such as the reversible jump Markov chain Monte Carlo algorithm and modern methods such as approximate Bayesian computation and multilevel Monte Carlo techniques An Introduction to Statistical Computing: Fully covers the traditional topics of statistical computing. Discusses both practical aspects and the theoretical background. Includes a chapter about continuous-time models. Illustrates all methods using examples and exercises. Provides answers to the exercises (using the statistical computing environment R); the corresponding source code is available online. Includes an introduction to programming in R. This book is mostly self-contained; the only prerequisites are basic knowledge of probability up to the law of large numbers. Careful presentation and examples make this book accessible to a wide range of students and suitable for self-study or as the basis of a taught course

Image Analysis and Processing ICIAP 2015

Image Analysis and Processing     ICIAP 2015 Author Vittorio Murino
ISBN-10 9783319232348
Release 2015-08-20
Pages 737
Download Link Click Here

The two-volume set LNCS 9279 and 9280 constitutes the refereed proceedings of the 18th International Conference on Image Analysis and Processing, ICIAP 2015, held in Genoa, Italy, in September 2015. The 129 papers presented were carefully reviewed and selected from 231 submissions. The papers are organized in the following seven topical sections: video analysis and understanding, multiview geometry and 3D computer vision, pattern recognition and machine learning, image analysis, detection and recognition, shape analysis and modeling, multimedia, and biomedical applications.

Bayesian Essentials with R

Bayesian Essentials with R Author Jean-Michel Marin
ISBN-10 9781461486879
Release 2013-10-28
Pages 296
Download Link Click Here

This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics.