Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Multiphysics and Multiscale Modeling

Multiphysics and Multiscale Modeling Author Young W. Kwon
ISBN-10 9781498782524
Release 2016-02-24
Pages 407
Download Link Click Here

Written to appeal to a wide field of engineers and scientists who work on multiscale and multiphysics analysis, Multiphysics and Multiscale Modeling: Techniques and Applications is dedicated to the many computational techniques and methods used to develop man-made systems as well as understand living systems that exist in nature. Presenting a body of research on multiscale and multiphysics analysis collected by the author over the years, this book provides an assessment of multiple computational techniques that include the finite element method, lattice Boltzmann method, cellular automata, and the molecular dynamics technique. The author also presents a number of example problems relevant to multiphysics and multiscale analyses, and introduces the proper coupling techniques that can be used in conjunction with computational methods to solve a multitude of multiscale and multiphysics problems. In addition, this detailed book: Provides a simplified analysis for crystalline structures using the finite element method and molecular dynamics Discusses multiscale analysis of biomaterials using human bones as an example Presents multiphysics problems for composite structures Includes fluidstructure interaction for composite structures surrounded by water Contains an example of the multiphysics analysis of electromechanical problems Introduces a multiphysics analysis of biomechanics using the example of blood vessels (for which there is fluid-structure interaction) Multiphysics and Multiscale Modeling: Techniques and Applications emphasizes the use of multiphysics and multiscale techniques to aid in the understanding and development of complex physical behaviors and systems. This book serves as a resource in mechanical engineering, bioengineering, and materials engineering study, practice, and research.



Principles of Multiscale Modeling

Principles of Multiscale Modeling Author Weinan E
ISBN-10 9781107096547
Release 2011-07-07
Pages 466
Download Link Click Here

A systematic discussion of the fundamental principles, written by a leading contributor to the field.



Multiscale Modelling Methods for Applications in Materials Science

Multiscale Modelling Methods for Applications in Materials Science Author
ISBN-10 9783893368990
Release 2013
Pages 319
Download Link Click Here

Multiscale Modelling Methods for Applications in Materials Science has been writing in one form or another for most of life. You can find so many inspiration from Multiscale Modelling Methods for Applications in Materials Science also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Multiscale Modelling Methods for Applications in Materials Science book for free.



Computational Science ICCS 2008

Computational Science     ICCS 2008 Author Marian Bubak
ISBN-10 9783540693864
Release 2008-06-11
Pages 752
Download Link Click Here

The three-volume set LNCS 5101-5103 constitutes the refereed proceedings of the 8th International Conference on Computational Science, ICCS 2008, held in Krakow, Poland in June 2008. The 167 revised papers of the main conference track presented together with the abstracts of 7 keynote talks and the 100 revised papers from 14 workshops were carefully reviewed and selected for inclusion in the three volumes. The main conference track was divided into approximately 20 parallel sessions addressing topics such as e-science applications and systems, scheduling and load balancing, software services and tools, new hardware and its applications, computer networks, simulation of complex systems, image processing and visualization, optimization techniques, numerical linear algebra, and numerical algorithms. The second volume contains workshop papers related to various computational research areas, e.g.: computer graphics and geometric modeling, simulation of multiphysics multiscale systems, computational chemistry and its applications, computational finance and business intelligence, physical, biological and social networks, geocomputation, and teaching computational science. The third volume is mostly related to computer science topics such as bioinformatics' challenges to computer science, tools for program development and analysis in computational science, software engineering for large-scale computing, collaborative and cooperative environments, applications of workflows in computational science, as well as intelligent agents and evolvable systems.



Nano and Cell Mechanics

Nano and Cell Mechanics Author Horacio D. Espinosa
ISBN-10 9781118482599
Release 2012-12-12
Pages 520
Download Link Click Here

Research in nano and cell mechanics has received much attention from the scientific community as a result of society needs and government initiatives to accelerate developments in materials, manufacturing, electronics, medicine and healthcare, energy, and the environment. Engineers and scientists are currently engaging in increasingly complex scientific problems that require interdisciplinary approaches. In this regard, studies in this field draw from fundamentals in atomistic scale phenomena, biology, statistical and continuum mechanics, and multiscale modeling and experimentation. As a result, contributions in these areas are spread over a large number of specialized journals, which prompted the Editors to assemble this book. Nano and Cell Mechanics: Fundamentals and Frontiers brings together many of the new developments in the field for the first time, and covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. Key features: • Provides an overview of recent advances in nano and cell mechanics. • Covers experimental, analytical, and computational tools used to investigate biological and nanoscale phenomena. • Covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. • Presents multiscale-multiphysics modeling and experimentation techniques. • Examines applications in materials, manufacturing, electronics, medicine and healthcare. Nano and Cell Mechanics: Fundamentals and Frontiers is written by internationally recognized experts in theoretical and applied mechanics, applied physics, chemistry, and biology. It is an invaluable reference for graduate students of nano- and bio-technologies, researchers in academia and industry who are working in nano and cell mechanics, and practitioners who are interested in learning about the latest analysis tools. The book can also serve as a text for graduate courses in theoretical and applied mechanics, mechanical engineering, materials science, and applied physics.



Multiscale Modeling of Heterogeneous Structures

Multiscale Modeling of Heterogeneous Structures Author Jurica Sorić
ISBN-10 9783319654638
Release 2017-11-30
Pages 381
Download Link Click Here

This book provides an overview of multiscale approaches and homogenization procedures as well as damage evaluation and crack initiation, and addresses recent advances in the analysis and discretization of heterogeneous materials. It also highlights the state of the art in this research area with respect to different computational methods, software development and applications to engineering structures. The first part focuses on defects in composite materials including their numerical and experimental investigations; elastic as well as elastoplastic constitutive models are considered, where the modeling has been performed at macro- and micro levels. The second part is devoted to novel computational schemes applied on different scales and discusses the validation of numerical results. The third part discusses gradient enhanced modeling, in particular quasi-brittle and ductile damage, using the gradient enhanced approach. The final part addresses thermoplasticity, solid-liquid mixtures and ferroelectric models. The contents are based on the international workshop “Multiscale Modeling of Heterogeneous Structures” (MUMO 2016), held in Dubrovnik, Croatia in September 2016.



Multiscale Methods

Multiscale Methods Author Jacob Fish
ISBN-10 9780199233854
Release 2010
Pages 598
Download Link Click Here

Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.



Particle Methods for Multi Scale and Multi Physics

Particle Methods for Multi Scale and Multi Physics Author M B Liu
ISBN-10 9789814571715
Release 2015-12-28
Pages 400
Download Link Click Here

Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences. Contents:IntroductionMolecular DynamicsDissipative Particle Dynamics — MethodologyDissipative Particle Dynamics — ApplicationsSmoothed Particle Hydrodynamics — MethodologySmoothed Particle Hydrodynamics — ApplicationsThree Typical Particle Methods Readership: Undergraduates, graduates, researchers, and professionals studying/dealing with fluid mechanics, numerical analysis and computational mathematics, engineering mechanics, ocean engineering, mechanical engineering. Key Features:The authors have many years of experience in meshfree and particle methods, and are renowned scientists in related areas, with highly cited publications. This can greatly attracts fellow researchers from all around the world to probe the latest development on current major particle methodsThe authors have authored numerous technical publications, and many popular books. They truly understand what the fellow researchers think and wantThe authors have extensive network in academics and research. It is comparatively easy to introduce the book to professional organizations, international conferences, and different academic bodies such as universities and research institutesKeywords:Computer Modeling;Numerical Methods;Meshfree Particle Methods;Smoothed Particle Hydrodynamics;Dissipative Particle Dynamics;Molecular Dynamics



Hybrid Machining

Hybrid Machining Author Xichun Luo
ISBN-10 9780128131138
Release 2018-06-27
Pages 326
Download Link Click Here

Hybrid Machining: Theory, Methods, and Case Studies covers the scientific fundamentals, techniques, applications and real-world descriptions of emerging hybrid machining technology. This field is advancing rapidly in industrial and academic contexts, creating a great need for the fundamental and technical guidance that this book provides. The book includes discussions of basic concepts, process design principles, standard hybrid machining processes, multi-scale modeling approaches, design, on-machine metrology and work handling systems. Readers interested in manufacturing systems, product design or machining technology will find this one-stop guide to hybrid machining the ideal reference. Includes tables of recommended processing parameters for key engineering materials/products for each hybrid machining process Provides case studies covering real industrial applications Explains how to use multiscale modeling for hybrid machining



Numerical Analysis of Multiscale Computations

Numerical Analysis of Multiscale Computations Author Björn Engquist
ISBN-10 9783642219436
Release 2011-10-14
Pages 430
Download Link Click Here

This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.



Bifurcation and Degradation of Geomaterials with Engineering Applications

Bifurcation and Degradation of Geomaterials with Engineering Applications Author Euripides Papamichos
ISBN-10 9783319563978
Release 2017-04-21
Pages 623
Download Link Click Here

This book contains the scientific contributions to the 11th International Workshop on Bifurcation and Degradation in Geomaterials (IWBDG) held in Limassol-Cyprus, May 21-25, 2017. The IWBDG series have grown in size and scope, since their inception 30 years ago in Germany, covering more and wider areas of geomaterials and geomechanics research including modern trends. The papers cover a wide range of topics including advances in instabilities, localized and diffuse failure, micromechanical, multiscale phenomena, multiphysics modeling and other related topics. This volume gathers a series of manuscript by brilliant international scholars who work on modern recent advances in experimental, theoretical and numerical methods. The theoretical and applied mechanics are linked successfully with engineering applications in traditional and in emerging fields, such as geomechanics for the energy and the environment. The quality of the contributed papers has benefited from the peer review process by expert referees. This book can be used as a useful reference for research students, academics and practicing engineers who are interested in the instability and degradation problems in geomaterials, geomechanics, geotechnical engineering and other related applications.



Multiscale Modeling of Complex Materials

Multiscale Modeling of Complex Materials Author Tomasz Sadowski
ISBN-10 9783709118122
Release 2014-10-14
Pages 278
Download Link Click Here

The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.



Informatics for Materials Science and Engineering

Informatics for Materials Science and Engineering Author Krishna Rajan
ISBN-10 9780123946140
Release 2013-07-10
Pages 542
Download Link Click Here

Materials informatics: a ‘hot topic’ area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this "quantitative avalanche"—and the resulting complex, multi-factor analyses required to understand it—means that interest, investment, and research are revisiting informatics approaches as a solution. This work, from Krishna Rajan, the leading expert of the informatics approach to materials, seeks to break down the barriers between data management, quality standards, data mining, exchange, and storage and analysis, as a means of accelerating scientific research in materials science. This solutions-based reference synthesizes foundational physical, statistical, and mathematical content with emerging experimental and real-world applications, for interdisciplinary researchers and those new to the field. Identifies and analyzes interdisciplinary strategies (including combinatorial and high throughput approaches) that accelerate materials development cycle times and reduces associated costs Mathematical and computational analysis aids formulation of new structure-property correlations among large, heterogeneous, and distributed data sets Practical examples, computational tools, and software analysis benefits rapid identification of critical data and analysis of theoretical needs for future problems



Modeling and Simulation for Microelectronic Packaging Assembly

Modeling and Simulation for Microelectronic Packaging Assembly Author Sheng Liu
ISBN-10 9780470828410
Release 2011-08-24
Pages 288
Download Link Click Here

Although there is increasing need for modeling and simulation in the IC package design phase, most assembly processes and various reliability tests are still based on the time consuming "test and try out" method to obtain the best solution. Modeling and simulation can easily ensure virtual Design of Experiments (DoE) to achieve the optimal solution. This has greatly reduced the cost and production time, especially for new product development. Using modeling and simulation will become increasingly necessary for future advances in 3D package development. In this book, Liu and Liu allow people in the area to learn the basic and advanced modeling and simulation skills to help solve problems they encounter. Models and simulates numerous processes in manufacturing, reliability and testing for the first time Provides the skills necessary for virtual prototyping and virtual reliability qualification and testing Demonstrates concurrent engineering and co-design approaches for advanced engineering design of microelectronic products Covers packaging and assembly for typical ICs, optoelectronics, MEMS, 2D/3D SiP, and nano interconnects Appendix and color images available for download from the book's companion website Liu and Liu have optimized the book for practicing engineers, researchers, and post-graduates in microelectronic packaging and interconnection design, assembly manufacturing, electronic reliability/quality, and semiconductor materials. Product managers, application engineers, sales and marketing staff, who need to explain to customers how the assembly manufacturing, reliability and testing will impact their products, will also find this book a critical resource. Appendix and color version of selected figures can be found at www.wiley.com/go/liu/packaging



Multiscale Simulations and Mechanics of Biological Materials

Multiscale Simulations and Mechanics of Biological Materials Author Shaofan Li
ISBN-10 9781118402948
Release 2013-03-19
Pages 480
Download Link Click Here

Multiscale Simulations and Mechanics of Biological Materials A compilation of recent developments in multiscale simulation and computational biomaterials written by leading specialists in the field Presenting the latest developments in multiscale mechanics and multiscale simulations, and offering a unique viewpoint on multiscale modelling of biological materials, this book outlines the latest developments in computational biological materials from atomistic and molecular scale simulation on DNA, proteins, and nano-particles, to meoscale soft matter modelling of cells, and to macroscale soft tissue and blood vessel, and bone simulations. Traditionally, computational biomaterials researchers come from biological chemistry and biomedical engineering, so this is probably the first edited book to present work from these talented computational mechanics researchers. The book has been written to honor Professor Wing Liu of Northwestern University, USA, who has made pioneering contributions in multiscale simulation and computational biomaterial in specific simulation of drag delivery at atomistic and molecular scale and computational cardiovascular fluid mechanics via immersed finite element method. Key features: Offers a unique interdisciplinary approach to multiscale biomaterial modelling aimed at both accessible introductory and advanced levels Presents a breadth of computational approaches for modelling biological materials across multiple length scales (molecular to whole-tissue scale), including solid and fluid based approaches A companion website for supplementary materials plus links to contributors’ websites (www.wiley.com/go/li/multiscale)



Handbook of Nanoscience Engineering and Technology Second Edition

Handbook of Nanoscience  Engineering  and Technology  Second Edition Author William A. Goddard III
ISBN-10 142000784X
Release 2007-05-03
Pages 1080
Download Link Click Here

The ability to study and manipulate matter at the nanoscale is the defining feature of 21st-century science. The first edition of the standard-setting Handbook of Nanoscience, Engineering, and Technology saw the field through its infancy. Reassembling the preeminent team of leading scientists and researchers from all areas of nanoscience and nanotechnology along with several new pioneers, this second edition will guide the field through its burgeoning adolescence. The phenomenal growth and staggering variety of applications of nanotechnology prevent any reference from providing a complete picture of the field. Instead, this edition surveys the most important areas, the most promising technologies, and the fastest-growing developments of current interest. In particular, it discusses fundamental theory of molecular and nanoelectronics, advanced fabrication technologies, modeling and simulation results, and novel molecular and nanoelectronic devices. New chapters in the Second Edition explore... The story of how the National Nanotechnology Initiative was born, where it is now, and where it is going Molecular computing and processing platforms Spin field effect transistors Moletronics and spintronics Nanoarchitectonics Molecular machines Magnetic manipulation applications in biomedical science Biological- and chemical-mediated self-assembly Nanomanufacturing Nanotextile technologies Nanofluidics for cell biology Carbon nanostructures and nanocomposites Accelerated design tools for nanophotonic devices Nanoparticles for drug delivery Remaining the definitive reference for nano researchers around the world, the Handbook of Nanoscience, Engineering, and Technology, Second Edition provides the signposts for blazers of the nano trail.



Advanced Computational Materials Modeling

Advanced Computational Materials Modeling Author Miguel Vaz Junior
ISBN-10 9783527632336
Release 2011-09-22
Pages 445
Download Link Click Here

With its discussion of strategies for modeling complex materials using new numerical techniques, mainly those based on the finite element method, this monograph covers a range of topics including computational plasticity, multi-scale formulations, optimization and parameter identification, damage mechanics and nonlinear finite elements.