Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

 Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences shows students how to apply statistical methods to behavioral science data in a sensible manner. Assuming some familiarity with introductory statistics, the book analyzes a host of real-world data to provide useful answers to real-life issues. The author begins by exploring the types and design of behavioral studies. He also explains how models are used in the analysis of data. After describing graphical methods, such as scatterplot matrices, the text covers simple linear regression, locally weighted regression, multiple linear regression, regression diagnostics, the equivalence of regression and ANOVA, the generalized linear model, and logistic regression. The author then discusses aspects of survival analysis, linear mixed effects models for longitudinal data, and the analysis of multivariate data. He also shows how to carry out principal components, factor, and cluster analyses. The final chapter presents approaches to analyzing multivariate observations from several different populations. Through real-life applications of statistical methodology, this book elucidates the implications of behavioral science studies for statistical analysis. It equips behavioral science students with enough statistical tools to help them succeed later on in their careers. Solutions to the problems as well as all R code and data sets for the examples are available at www.crcpress.com

 Drawing on the authors’ extensive research in the analysis of categorical longitudinal data, Latent Markov Models for Longitudinal Data focuses on the formulation of latent Markov models and the practical use of these models. Numerous examples illustrate how latent Markov models are used in economics, education, sociology, and other fields. The R and MATLAB® routines used for the examples are available on the authors’ website. The book provides you with the essential background on latent variable models, particularly the latent class model. It discusses how the Markov chain model and the latent class model represent a useful paradigm for latent Markov models. The authors illustrate the assumptions of the basic version of the latent Markov model and introduce maximum likelihood estimation through the Expectation-Maximization algorithm. They also cover constrained versions of the basic latent Markov model, describe the inclusion of the individual covariates, and address the random effects and multilevel extensions of the model. After covering advanced topics, the book concludes with a discussion on Bayesian inference as an alternative to maximum likelihood inference. As longitudinal data become increasingly relevant in many fields, researchers must rely on specific statistical and econometric models tailored to their application. A complete overview of latent Markov models, this book demonstrates how to use the models in three types of analysis: transition analysis with measurement errors, analyses that consider unobserved heterogeneity, and finding clusters of units and studying the transition between the clusters.

 Taking a practical approach that draws on the authors’ extensive teaching, consulting, and research experiences, Applied Survey Data Analysis provides an intermediate-level statistical overview of the analysis of complex sample survey data. It emphasizes methods and worked examples using available software procedures while reinforcing the principles and theory that underlie those methods. After introducing a step-by-step process for approaching a survey analysis problem, the book presents the fundamental features of complex sample designs and shows how to integrate design characteristics into the statistical methods and software for survey estimation and inference. The authors then focus on the methods and models used in analyzing continuous, categorical, and count-dependent variables; event history; and missing data problems. Some of the techniques discussed include univariate descriptive and simple bivariate analyses, the linear regression model, generalized linear regression modeling methods, the Cox proportional hazards model, discrete time models, and the multiple imputation analysis method. The final chapter covers new developments in survey applications of advanced statistical techniques, including model-based analysis approaches. Designed for readers working in a wide array of disciplines who use survey data in their work, this book also provides a useful framework for integrating more in-depth studies of the theory and methods of survey data analysis. A guide to the applied statistical analysis and interpretation of survey data, it contains many examples and practical exercises based on major real-world survey data sets. Although the authors use Stata for most examples in the text, they offer SAS, SPSS, SUDAAN, R, WesVar, IVEware, and Mplus software code for replicating the examples on the book’s website: http://www.isr.umich.edu/src/smp/asda/

 Providing a practical, thorough understanding of how factor analysis works, Foundations of Factor Analysis, Second Edition discusses the assumptions underlying the equations and procedures of this method. It also explains the options in commercial computer programs for performing factor analysis and structural equation modeling. This long-awaited edition takes into account the various developments that have occurred since the publication of the original edition. New to the Second Edition A new chapter on the multivariate normal distribution, its general properties, and the concept of maximum-likelihood estimation More complete coverage of descriptive factor analysis and doublet factor analysis A rewritten chapter on analytic oblique rotation that focuses on the gradient projection algorithm and its applications Discussions on the developments of factor score indeterminacy A revised chapter on confirmatory factor analysis that addresses philosophy of science issues, model specification and identification, parameter estimation, and algorithm derivation Presenting the mathematics only as needed to understand the derivation of an equation or procedure, this textbook prepares students for later courses on structural equation modeling. It enables them to choose the proper factor analytic procedure, make modifications to the procedure, and produce new results.

 When scientists formulate their theories, expectations, and hypotheses, they often use statements like: ``I expect mean A to be bigger than means B and C"; ``I expect that the relation between Y and both X1 and X2 is positive"; and ``I expect the relation between Y and X1 to be stronger than the relation between Y and X2". Stated otherwise, they formulate their expectations in terms of inequality constraints among the parameters in which they are interested, that is, they formulate Informative Hypotheses. There is currently a sound theoretical foundation for the evaluation of informative hypotheses using Bayes factors, p-values and the generalized order restricted information criterion. Furthermore, software that is often free is available to enable researchers to evaluate the informative hypotheses using their own data. The road is open to challenge the dominance of the null hypothesis for contemporary research in behavioral, social, and other sciences.

 Drawing on the authors’ varied experiences working and teaching in the field, Analysis of Multivariate Social Science Data, Second Editionenables a basic understanding of how to use key multivariate methods in the social sciences. With updates in every chapter, this edition expands its topics to include regression analysis, confirmatory factor analysis, structural equation models, and multilevel models. After emphasizing the summarization of data in the first several chapters, the authors focus on regression analysis. This chapter provides a link between the two halves of the book, signaling the move from descriptive to inferential methods and from interdependence to dependence. The remainder of the text deals with model-based methods that primarily make inferences about processes that generate data. Relying heavily on numerical examples, the authors provide insight into the purpose and working of the methods as well as the interpretation of data. Many of the same examples are used throughout to illustrate connections between the methods. In most chapters, the authors present suggestions for further work that go beyond conventional exercises, encouraging readers to explore new ground in social science research. Requiring minimal mathematical and statistical knowledge, this book shows how various multivariate methods reveal different aspects of data and thus help answer substantive research questions.

 Praise for the First Edition "The attention to detail is impressive. The book is very well written and the author is extremely careful with his descriptions . . . the examples are wonderful." —The American Statistician Fully revised to reflect the latest methodologies and emerging applications, Applied Regression Modeling, Second Edition continues to highlight the benefits of statistical methods, specifically regression analysis and modeling, for understanding, analyzing, and interpreting multivariate data in business, science, and social science applications. The author utilizes a bounty of real-life examples, case studies, illustrations, and graphics to introduce readers to the world of regression analysis using various software packages, including R, SPSS, Minitab, SAS, JMP, and S-PLUS. In a clear and careful writing style, the book introduces modeling extensions that illustrate more advanced regression techniques, including logistic regression, Poisson regression, discrete choice models, multilevel models, and Bayesian modeling. In addition, the Second Edition features clarification and expansion of challenging topics, such as: Transformations, indicator variables, and interaction Testing model assumptions Nonconstant variance Autocorrelation Variable selection methods Model building and graphical interpretation Throughout the book, datasets and examples have been updated and additional problems are included at the end of each chapter, allowing readers to test their comprehension of the presented material. In addition, a related website features the book's datasets, presentation slides, detailed statistical software instructions, and learning resources including additional problems and instructional videos. With an intuitive approach that is not heavy on mathematical detail, Applied Regression Modeling, Second Edition is an excellent book for courses on statistical regression analysis at the upper-undergraduate and graduate level. The book also serves as a valuable resource for professionals and researchers who utilize statistical methods for decision-making in their everyday work.

 Multivariate analysis is an important tool for social researchers, but the subject is broad and can be quite technical for those with limited mathematical and statistical backgrounds. To effectively acquire the tools and techniques they need to interpret multivariate data, social science students need clear explanations, a minimum of mathematical detail, and a wide range of exercises and worked examples. Classroom tested for more than 10 years, The Analysis and Interpretation of Multivariate Data for Social Scientists describes and illustrates methods of multivariate data analysis important to the social sciences. The authors focus on interpreting the pattern of relationships among many variables rather than establishing causal linkages, and rely heavily on numerical examples, visualization, and on verbal , rather than mathematical exposition. They present methods for categorical variables alongside the more familiar method for continuous variables and place particular emphasis on latent variable techniques. Ideal for introductory, senior undergraduate and graduate-level courses in multivariate analysis for social science students, this book combines depth of understanding and insight with the practical details of how to carry out and interpret multivariate analyses on real data. It gives them a solid understanding of the most commonly used multivariate methods and the knowledge and tools to implement them. Datasets, the SPSS syntax and code used in the examples, and software for performing latent variable modelling are available at http://www.mlwin.com/team/aimdss.html>

 Providing a practical, thorough understanding of how factor analysis works,Foundations of Factor Analysis, Second Editiondiscusses the assumptions underlying the equations and procedures of this method. It also explains the options in commercial computer programs for performing factor analysis and structural equation modeling. This long-awaited edition takes into account the various developments that have occurred since the publication of the original edition. New to the Second Edition A new chapter on the multivariate normal distribution, its general properties, and the concept of maximum-likelihood estimation More complete coverage of descriptive factor analysis and doublet factor analysis A rewritten chapter on analytic oblique rotation that focuses on the gradient projection algorithm and its applications Discussions on the developments of factor score indeterminacy A revised chapter on confirmatory factor analysis that addresses philosophy of science issues, model specification and identification, parameter estimation, and algorithm derivation Presenting the mathematics only as needed to understand the derivation of an equation or procedure, this textbook prepares students for later courses on structural equation modeling. It enables them to choose the proper factor analytic procedure, make modifications to the procedure, and produce new results.

 The British National Bibliography has been writing in one form or another for most of life. You can find so many inspiration from The British National Bibliography also informative, and entertaining. Click DOWNLOAD or Read Online button to get full The British National Bibliography book for free.

 As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition. Clearly balancing theory with applications, this book describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation.

 This successful book, now available in paperback, provides academics and researchers with a clear set of prescriptions for estimating, testing and probing interactions in regression models. Including the latest research in the area, such as Fuller's work on the corrected/constrained estimator, the book is appropriate for anyone who uses multiple regression to estimate models, or for those enrolled in courses on multivariate statistics.

 This book aims to provide a broad introduction to the R statistical environment in the context of applied regression analysis, which is typically studied by social scientists and others in a second course in applied statistics.