Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Multivariate Statistical Methods

Multivariate Statistical Methods Author Bryan F.J. Manly
ISBN-10 9781498728997
Release 2016-11-03
Pages 269
Download Link Click Here

Multivariate Statistical Methods: A Primer provides an introductory overview of multivariate methods without getting too deep into the mathematical details. This fourth edition is a revised and updated version of this bestselling introductory textbook. It retains the clear and concise style of the previous editions of the book and focuses on examples from biological and environmental sciences. The major update with this edition is that R code has been included for each of the analyses described, although in practice any standard statistical package can be used. The original idea with this book still applies. This was to make it as short as possible and enable readers to begin using multivariate methods in an intelligent manner. With updated information on multivariate analyses, new references, and R code included, this book continues to provide a timely introduction to useful tools for multivariate statistical analysis.



Multivariate Statistical Methods

Multivariate Statistical Methods Author Bryan F.J. Manly
ISBN-10 1584884142
Release 2004-07-06
Pages 224
Download Link Click Here

Multivariate methods are now widely used in the quantitative sciences as well as in statistics because of the ready availability of computer packages for performing the calculations. While access to suitable computer software is essential to using multivariate methods, using the software still requires a working knowledge of these methods and how they can be used. Multivariate Statistical Methods: A Primer, Third Edition introduces these methods and provides a general overview of the techniques without overwhelming you with comprehensive details. This thoroughly revised, updated edition of a best-selling introductory text retains the author's trademark clear, concise style but includes a range of new material, new exercises, and supporting materials on the Web. New in the Third Edition: Fully updated references Additional examples and exercises from the social and environmental sciences A comparison of the various statistical software packages, including Stata, Statistica, SAS Minitab, and Genstat, particularly in terms of their ease of use by beginners In his efforts to produce a book that is as short as possible and that enables you to begin to use multivariate methods in an intelligent manner, the author has produced a succinct and handy reference. With updated information on multivariate analyses, new examples using the latest software, and updated references, this book provides a timely introduction to useful tools for statistical analysis.



Multivariate Statistical Methods

Multivariate Statistical Methods Author Bryan F.J. Manly
ISBN-10 0412603004
Release 1994-07-01
Pages 232
Download Link Click Here

The purpose of this book is to introduce multivariate statistical methods to non-mathematicians. It is not intended to be comprehensive. Rather, the intention is to keep the details to a minimum while still conveying a good idea of what can be done. In other words, it is a book to 'get you going' in a particular area of statistical methods. This second edition has retained all of Professor Manly's crystal clear style. It is based on a course that has been taught successfully at the University of Otago for a number of years but has increased coverage on measuring distances between cases based on presence-absence data, a new selection on logistic regression, new exercises and two completely new chapters on graphical methods and ordination. The author has taken into account the major shift in the way in which computer software is used, but the emphasis is on the underlying principles rather than the use of particular programs.



A Primer of Multivariate Statistics

A Primer of Multivariate Statistics Author Richard J. Harris
ISBN-10 9781135555368
Release 2014-11-13
Pages 632
Download Link Click Here

Drawing upon more than 30 years of experience in working with statistics, Dr. Richard J. Harris has updated A Primer of Multivariate Statistics to provide a model of balance between how-to and why. This classic text covers multivariate techniques with a taste of latent variable approaches. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis. This edition retains its conversational writing style while focusing on classical techniques. The book gives the reader a feel for why one should consider diving into more detailed treatments of computer-modeling and latent-variable techniques, such as non-recursive path analysis, confirmatory factor analysis, and hierarchical linear modeling. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis.



Randomization Bootstrap and Monte Carlo Methods in Biology Third Edition

Randomization  Bootstrap and Monte Carlo Methods in Biology  Third Edition Author Bryan F.J. Manly
ISBN-10 9781482296419
Release 2006-08-15
Pages 480
Download Link Click Here

Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. This new edition of the bestselling Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates the value of a number of these methods with an emphasis on biological applications. This textbook focuses on three related areas in computational statistics: randomization, bootstrapping, and Monte Carlo methods of inference. The author emphasizes the sampling approach within randomization testing and confidence intervals. Similar to randomization, the book shows how bootstrapping, or resampling, can be used for confidence intervals and tests of significance. It also explores how to use Monte Carlo methods to test hypotheses and construct confidence intervals. New to the Third Edition Updated information on regression and time series analysis, multivariate methods, survival and growth data as well as software for computational statistics References that reflect recent developments in methodology and computing techniques Additional references on new applications of computer-intensive methods in biology Providing comprehensive coverage of computer-intensive applications while also offering data sets online, Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition supplies a solid foundation for the ever-expanding field of statistics and quantitative analysis in biology.



Multivariable Analysis

Multivariable Analysis Author Mitchell H. Katz
ISBN-10 9781139500319
Release 2011-03-10
Pages
Download Link Click Here

Now in its third edition, this highly successful text has been fully revised and updated with expanded sections on cutting-edge techniques including Poisson regression, negative binomial regression, multinomial logistic regression and proportional odds regression. As before, it focuses on easy-to-follow explanations of complicated multivariable techniques. It is the perfect introduction for all clinical researchers. It describes how to perform and interpret multivariable analysis, using plain language rather than complex derivations and mathematical formulae. It focuses on the nuts and bolts of performing research, and prepares the reader to set up, perform and interpret multivariable models. Numerous tables, graphs and tips help to demystify the process of performing multivariable analysis. The text is illustrated with many up-to-date examples from the medical literature on how to use multivariable analysis in clinical practice and in research.



Applied Multivariate Statistical Concepts

Applied Multivariate Statistical Concepts Author Debbie L. Hahs-Vaughn
ISBN-10 9781317811367
Release 2016-12-01
Pages 662
Download Link Click Here

More comprehensive than other texts, this new book covers the classic and cutting edge multivariate techniques used in today’s research. Ideal for courses on multivariate statistics/analysis/design, advanced statistics or quantitative techniques taught in psychology, education, sociology, and business, the book also appeals to researchers with no training in multivariate methods. Through clear writing and engaging pedagogy and examples using real data, Hahs-Vaughn walks students through the most used methods to learn why and how to apply each technique. A conceptual approach with a higher than usual text-to-formula ratio helps reader’s master key concepts so they can implement and interpret results generated by today’s sophisticated software. Annotated screenshots from SPSS and other packages are integrated throughout. Designed for course flexibility, after the first 4 chapters, instructors can use chapters in any sequence or combination to fit the needs of their students. Each chapter includes a ‘mathematical snapshot’ that highlights the technical components of each procedure, so only the most crucial equations are included. Highlights include: -Outlines, key concepts, and vignettes related to key concepts preview what’s to come in each chapter -Examples using real data from education, psychology, and other social sciences illustrate key concepts -Extensive coverage of assumptions including tables, the effects of their violation, and how to test for each technique -Conceptual, computational, and interpretative problems mirror the real-world problems students encounter in their studies and careers -A focus on data screening and power analysis with attention on the special needs of each particular method -Instructions for using SPSS via screenshots and annotated output along with HLM, Mplus, LISREL, and G*Power where appropriate, to demonstrate how to interpret results -Templates for writing research questions and APA-style write-ups of results which serve as models -Propensity score analysis chapter that demonstrates the use of this increasingly popular technique -A review of matrix algebra for those who want an introduction (prerequisites include an introduction to factorial ANOVA, ANCOVA, and simple linear regression, but knowledge of matrix algebra is not assumed) -www.routledge.com/9780415842365 provides the text’s datasets preformatted for use in SPSS and other statistical packages for readers, as well as answers to all chapter problems, Power Points, and test items for instructors ?



Computational Statistics Handbook with MATLAB Third Edition

Computational Statistics Handbook with MATLAB  Third Edition Author Wendy L. Martinez
ISBN-10 9781466592742
Release 2015-12-16
Pages 731
Download Link Click Here

A Strong Practical Focus on Applications and Algorithms Computational Statistics Handbook with MATLAB®, Third Edition covers today’s most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the implementation of the methods. New to the Third Edition This third edition is updated with the latest version of MATLAB and the corresponding version of the Statistics and Machine Learning Toolbox. It also incorporates new sections on the nearest neighbor classifier, support vector machines, model checking and regularization, partial least squares regression, and multivariate adaptive regression splines. Web Resource The authors include algorithmic descriptions of the procedures as well as examples that illustrate the use of algorithms in data analysis. The MATLAB code, examples, and data sets are available online.



Multivariate Statistical Analysis

Multivariate Statistical Analysis Author Sam Kash Kachigan
ISBN-10 UOM:39015020845502
Release 1991-01-01
Pages 303
Download Link Click Here

This classic book provides the much needed conceptual explanations of advanced computer-based multivariate data analysis techniques: correlation and regression analysis, factor analysis, discrimination analysis, cluster analysis, multi-dimensional scaling, perceptual mapping, and more. It closes the gap between spiraling technology and its intelligent application, fulfilling the potential of both.



A Mathematical Primer for Social Statistics

A Mathematical Primer for Social Statistics Author John Fox
ISBN-10 9781412960809
Release 2009
Pages 170
Download Link Click Here

Beyond the introductory level, learning and effectively using statistical methods in the social sciences requires some knowledge of mathematics. This handy volume introduces the areas of mathematics that are most important to applied social statistics.



Applied Multivariate Statistical Analysis Pearson New International Edition

Applied Multivariate Statistical Analysis  Pearson New International Edition Author Richard A. Johnson
ISBN-10 9781292037578
Release 2013-08-29
Pages 776
Download Link Click Here

For courses in Multivariate Statistics, Marketing Research, Intermediate Business Statistics, Statistics in Education, and graduate-level courses in Experimental Design and Statistics. Appropriate for experimental scientists in a variety of disciplines, this market-leading text offers a readable introduction to the statistical analysis of multivariate observations. Its primary goal is to impart the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Ideal for a junior/senior or graduate level course that explores the statistical methods for describing and analyzing multivariate data, the text assumes two or more statistics courses as a prerequisite.



Exploratory Multivariate Analysis by Example Using R Second Edition

Exploratory Multivariate Analysis by Example Using R  Second Edition Author Francois Husson
ISBN-10 9781315301860
Release 2017-05-08
Pages 262
Download Link Click Here

Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis. The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualising objects that are common to the exploratory methods. The authors show how to use categorical variables in a PCA context in which variables are quantitative, how to handle more than two categorical variables in a CA context in which there are originally two variables, and how to add quantitative variables in an MCA context in which variables are categorical. They also illustrate the methods using examples from various fields, with related R code accessible in the FactoMineR package developed by the authors. The book has been written using minimal mathematics so as to appeal to applied statisticians, as well as researchers from various disciplines, including medical research and the social sciences. Readers can use the theory, examples, and software presented in this book in order to be fully equipped to tackle real-life multivariate data.



The Geometry of Multivariate Statistics

The Geometry of Multivariate Statistics Author Thomas D. Wickens
ISBN-10 9781317780229
Release 2014-02-25
Pages 176
Download Link Click Here

A traditional approach to developing multivariate statistical theory is algebraic. Sets of observations are represented by matrices, linear combinations are formed from these matrices by multiplying them by coefficient matrices, and useful statistics are found by imposing various criteria of optimization on these combinations. Matrix algebra is the vehicle for these calculations. A second approach is computational. Since many users find that they do not need to know the mathematical basis of the techniques as long as they have a way to transform data into results, the computation can be done by a package of computer programs that somebody else has written. An approach from this perspective emphasizes how the computer packages are used, and is usually coupled with rules that allow one to extract the most important numbers from the output and interpret them. Useful as both approaches are--particularly when combined--they can overlook an important aspect of multivariate analysis. To apply it correctly, one needs a way to conceptualize the multivariate relationships that exist among variables. This book is designed to help the reader develop a way of thinking about multivariate statistics, as well as to understand in a broader and more intuitive sense what the procedures do and how their results are interpreted. Presenting important procedures of multivariate statistical theory geometrically, the author hopes that this emphasis on the geometry will give the reader a coherent picture into which all the multivariate techniques fit.



Primer of Applied Regression Analysis of Variance Third Edition

Primer of Applied Regression   Analysis of Variance  Third Edition Author Stanton A. Glantz
ISBN-10 9780071822442
Release 2016-02-22
Pages 992
Download Link Click Here

A textbook on the use of advanced statistical methods in healthcare sciences Primer of Applied Regression & Analysis of Variance is a textbook especially created for medical, public health, and social and environmental science students who need applied (not theoretical) training in the use of statistical methods. The book has been acclaimed for its user-friendly style that makes complicated material understandable to readers who do not have an extensive math background. The text is packed with learning aids that include chapter-ending summaries and end-of-chapter problems that quickly assess mastery of the material. Examples from biological and health sciences are included to clarify and illustrate key points. The techniques discussed apply to a wide range of disciplines, including social and behavioral science as well as health and life sciences. Typical courses that would use this text include those that cover multiple linear regression and ANOVA. Four completely new chapters Completely updated software information and examples



Statistics in Plain English

Statistics in Plain English Author Timothy C. Urdan
ISBN-10 0805834427
Release 2001
Pages 149
Download Link Click Here

This title is intended as a supplement for statistics or research methods courses, or for any course that uses statistics, or as a reference book to refresh one's memory about statistical concepts. The examples are varied so that it can be used in social sciences departments.



Statistical and Machine Learning Data Mining

Statistical and Machine Learning Data Mining Author Bruce Ratner
ISBN-10 9781351652384
Release 2017-07-12
Pages 662
Download Link Click Here

The third edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. is a compilation of new and creative data mining techniques, which address the scaling-up of the framework of classical and modern statistical methodology, for predictive modeling and analysis of big data. SM-DM provides proper solutions to common problems facing the newly minted data scientist in the data mining discipline. Its presentation focuses on the needs of the data scientists (commonly known as statisticians, data miners and data analysts), delivering practical yet powerful, simple yet insightful quantitative techniques, most of which use the "old" statistical methodologies improved upon by the new machine learning influence.



Statistics for Environmental Science and Management

Statistics for Environmental Science and Management Author Bryan F. J. Manly
ISBN-10 1584880295
Release 2000-09-21
Pages 336
Download Link Click Here

The use of appropriate statistical methods is essential when working with environmental data. Yet, many environmental professionals are not statisticians. A ready reference guide to the most common methods used in environmental applications, Statistics for Environmental Science and Management introduces the statistical methods most frequently used by environmental scientists, managers, and students. Using a non-mathematical approach, the author describes techniques such as: environmental monitoring, impact assessment, assessing site reclamation, censored data, and Monte Carlo risk assessment, as well as the key topics of time series and spatial data. The book shows the strengths of different types of conclusions available from statistical analyses. It contains internet sources of information that give readers access to the latest information on specific topics. The author's easy to understand style makes the subject matter accessible to anyone with a rudimentary knowledge of the basics of statistics while emphasizing how the techniques are applied in the environmental field. Clearly and copiously illustrated with line drawings and tables, Statistics for Environmental Science and Management covers all the statistical methods used with environmental applications and is suitable as a text for graduate students in the environmental science area.