Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Nature Inspired Optimization Algorithms

Nature Inspired Optimization Algorithms Author Xin-She Yang
ISBN-10 9780124167452
Release 2014-02-17
Pages 300
Download Link Click Here

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature Provides a theoretical understanding as well as practical implementation hints Provides a step-by-step introduction to each algorithm



Introduction to Nature Inspired Optimization

Introduction to Nature Inspired Optimization Author George Lindfield
ISBN-10 9780128036662
Release 2017-08-10
Pages 256
Download Link Click Here

Introduction to Nature-Inspired Optimization brings together many of the innovative mathematical methods for non-linear optimization that have their origins in the way various species behave in order to optimize their chances of survival. The book describes each method, examines their strengths and weaknesses, and where appropriate, provides the MATLAB code to give practical insight into the detailed structure of these methods and how they work. Nature-inspired algorithms emulate processes that are found in the natural world, spurring interest for optimization. Lindfield/Penny provide concise coverage to all the major algorithms, including genetic algorithms, artificial bee colony algorithms, ant colony optimization and the cuckoo search algorithm, among others. This book provides a quick reference to practicing engineers, researchers and graduate students who work in the field of optimization. Applies concepts in nature and biology to develop new algorithms for nonlinear optimization Offers working MATLAB® programs for the major algorithms described, applying them to a range of problems Provides useful comparative studies of the algorithms, highlighting their strengths and weaknesses Discusses the current state-of-the-field and indicates possible areas of future development



Nature inspired Metaheuristic Algorithms

Nature inspired Metaheuristic Algorithms Author Xin-She Yang
ISBN-10 9781905986286
Release 2010
Pages 148
Download Link Click Here

Modern metaheuristic algorithms such as bee algorithms and harmony search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms. We also briefly introduce the photosynthetic algorithm, the enzyme algorithm, and Tabu search. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course. As some of the algorithms such as the harmony search and firefly algorithms are at the forefront of current research, this book can also serve as a reference book for researchers.



Nature Inspired Algorithms for Optimisation

Nature Inspired Algorithms for Optimisation Author Raymond Chiong
ISBN-10 9783642002663
Release 2009-04-28
Pages 516
Download Link Click Here

Nature-Inspired Algorithms have been gaining much popularity in recent years due to the fact that many real-world optimisation problems have become increasingly large, complex and dynamic. The size and complexity of the problems nowadays require the development of methods and solutions whose efficiency is measured by their ability to find acceptable results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This volume 'Nature-Inspired Algorithms for Optimisation' is a collection of the latest state-of-the-art algorithms and important studies for tackling various kinds of optimisation problems. It comprises 18 chapters, including two introductory chapters which address the fundamental issues that have made optimisation problems difficult to solve and explain the rationale for seeking inspiration from nature. The contributions stand out through their novelty and clarity of the algorithmic descriptions and analyses, and lead the way to interesting and varied new applications.



Advanced Optimization by Nature Inspired Algorithms

Advanced Optimization by Nature Inspired Algorithms Author Omid Bozorg-Haddad
ISBN-10 9789811052217
Release 2017-06-30
Pages 159
Download Link Click Here

This book, compiles, presents, and explains the most important meta-heuristic and evolutionary optimization algorithms whose successful performance has been proven in different fields of engineering, and it includes application of these algorithms to important engineering optimization problems. In addition, this book guides readers to studies that have implemented these algorithms by providing a literature review on developments and applications of each algorithm. This book is intended for students, but can be used by researchers and professionals in the area of engineering optimization.



Nature Inspired Computation in Engineering

Nature Inspired Computation in Engineering Author Xin-She Yang
ISBN-10 9783319302355
Release 2016-03-19
Pages 276
Download Link Click Here

This timely review book summarizes the state-of-the-art developments in nature-inspired optimization algorithms and their applications in engineering. Algorithms and topics include the overview and history of nature-inspired algorithms, discrete firefly algorithm, discrete cuckoo search, plant propagation algorithm, parameter-free bat algorithm, gravitational search, biogeography-based algorithm, differential evolution, particle swarm optimization and others. Applications include vehicle routing, swarming robots, discrete and combinatorial optimization, clustering of wireless sensor networks, cell formation, economic load dispatch, metamodeling, surrogated-assisted cooperative co-evolution, data fitting and reverse engineering as well as other case studies in engineering. This book will be an ideal reference for researchers, lecturers, graduates and engineers who are interested in nature-inspired computation, artificial intelligence and computational intelligence. It can also serve as a reference for relevant courses in computer science, artificial intelligence and machine learning, natural computation, engineering optimization and data mining.



Nature Inspired Algorithms and Applied Optimization

Nature Inspired Algorithms and Applied Optimization Author Xin-She Yang
ISBN-10 9783319676692
Release 2017-10-08
Pages 330
Download Link Click Here

This book reviews the state-of-the-art developments in nature-inspired algorithms and their applications in various disciplines, ranging from feature selection and engineering design optimization to scheduling and vehicle routing. It introduces each algorithm and its implementation with case studies as well as extensive literature reviews, and also includes self-contained chapters featuring theoretical analyses, such as convergence analysis and no-free-lunch theorems so as to provide insights into the current nature-inspired optimization algorithms. Topics include ant colony optimization, the bat algorithm, B-spline curve fitting, cuckoo search, feature selection, economic load dispatch, the firefly algorithm, the flower pollination algorithm, knapsack problem, octonian and quaternion representations, particle swarm optimization, scheduling, wireless networks, vehicle routing with time windows, and maximally different alternatives. This timely book serves as a practical guide and reference resource for students, researchers and professionals.



Clever Algorithms

Clever Algorithms Author Jason Brownlee
ISBN-10 9781446785065
Release 2011-01
Pages 438
Download Link Click Here

This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language.



Harmony Search and Nature Inspired Optimization Algorithms

Harmony Search and Nature Inspired Optimization Algorithms Author Neha Yadav
ISBN-10 9811307601
Release 2018-08-29
Pages 580
Download Link Click Here

The book covers different aspects of real-world applications of optimization algorithms. It provides insights from the Fourth International Conference on Harmony Search, Soft Computing and Applications held at BML Munjal University, Gurgaon, India on February 7–9, 2018. It consists of research articles on novel and newly proposed optimization algorithms; the theoretical study of nature-inspired optimization algorithms; numerically established results of nature-inspired optimization algorithms; and real-world applications of optimization algorithms and synthetic benchmarking of optimization algorithms.



Nature Inspired Computing and Optimization

Nature Inspired Computing and Optimization Author Srikanta Patnaik
ISBN-10 9783319509204
Release 2017-03-07
Pages 494
Download Link Click Here

The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based optimization algorithm, the flower pollination algorithm, multi-agent systems and particle swarm optimization. This timely book is intended as a practice-oriented reference guide for students, researchers and professionals.



Search and Optimization by Metaheuristics

Search and Optimization by Metaheuristics Author Ke-Lin Du
ISBN-10 9783319411927
Release 2016-07-20
Pages 434
Download Link Click Here

This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.



Swarm Intelligence and Bio Inspired Computation

Swarm Intelligence and Bio Inspired Computation Author Xin-She Yang
ISBN-10 9780124051775
Release 2013-05-16
Pages 450
Download Link Click Here

Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. Focuses on the introduction and analysis of key algorithms Includes case studies for real-world applications Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.



Fuzzy Logic Augmentation of Nature Inspired Optimization Metaheuristics

Fuzzy Logic Augmentation of Nature Inspired Optimization Metaheuristics Author Oscar Castillo
ISBN-10 9783319109602
Release 2014-09-20
Pages 195
Download Link Click Here

This book describes recent advances on fuzzy logic augmentation of nature-inspired optimization metaheuristics and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in two main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic augmentation of nature-inspired optimization metaheuristics, which basically consists of papers that propose new optimization algorithms enhanced using fuzzy systems. The second part contains papers with the main theme of application of optimization algorithms, which are basically papers using nature-inspired techniques to achieve optimization of complex optimization problems in diverse areas of application.



Discrete Problems in Nature Inspired Algorithms

Discrete Problems in Nature Inspired Algorithms Author Anupam Prof. Shukla
ISBN-10 9781351260862
Release 2017-12-15
Pages 310
Download Link Click Here

This book includes introduction of several algorithms which are exclusively for graph based problems, namely combinatorial optimization problems, path formation problems, etc. Each chapter includes the introduction of the basic traditional nature inspired algorithm and discussion of the modified version for discrete algorithms including problems pertaining to discussed algorithms.



Bioinspired Computation in Combinatorial Optimization

Bioinspired Computation in Combinatorial Optimization Author Frank Neumann
ISBN-10 9783642165443
Release 2010-11-04
Pages 216
Download Link Click Here

Bioinspired computation methods such as evolutionary algorithms and ant colony optimization are being applied successfully to complex engineering problems and to problems from combinatorial optimization, and with this comes the requirement to more fully understand the computational complexity of these search heuristics. This is the first textbook covering the most important results achieved in this area. The authors study the computational complexity of bioinspired computation and show how runtime behavior can be analyzed in a rigorous way using some of the best-known combinatorial optimization problems -- minimum spanning trees, shortest paths, maximum matching, covering and scheduling problems. A feature of the book is the separate treatment of single- and multiobjective problems, the latter a domain where the development of the underlying theory seems to be lagging practical successes. This book will be very valuable for teaching courses on bioinspired computation and combinatorial optimization. Researchers will also benefit as the presentation of the theory covers the most important developments in the field over the last 10 years. Finally, with a focus on well-studied combinatorial optimization problems rather than toy problems, the book will also be very valuable for practitioners in this field.



Nature Inspired Cooperative Strategies for Optimization NICSO 2010

Nature Inspired Cooperative Strategies for Optimization  NICSO 2010 Author Carlos Cruz
ISBN-10 9783642125386
Release 2010-04-16
Pages 420
Download Link Click Here

Many aspects of Nature, Biology or even from Society have become part of the techniques and algorithms used in computer science or they have been used to enhance or hybridize several techniques through the inclusion of advanced evolution, cooperation or biologically based additions. The previous NICSO workshops were held in Granada, Spain, 2006, Acireale, Italy, 2007, and in Tenerife, Spain, 2008. As in the previous editions, NICSO 2010, held in Granada, Spain, was conceived as a forum for the latest ideas and the state of the art research related to nature inspired cooperative strategies. The contributions collected in this book cover topics including nature-inspired techniques like Genetic Algorithms, Evolutionary Algorithms, Ant and Bee Colonies, Swarm Intelligence approaches, Neural Networks, several Cooperation Models, Structures and Strategies, Agents Models, Social Interactions, as well as new algorithms based on the behaviour of fireflies or bats.



Bio Inspired Computation and Applications in Image Processing

Bio Inspired Computation and Applications in Image Processing Author Xin-She Yang
ISBN-10 9780128045374
Release 2016-08-09
Pages 374
Download Link Click Here

Bio-Inspired Computation and Applications in Image Processing summarizes the latest developments in bio-inspired computation in image processing, focusing on nature-inspired algorithms that are linked with deep learning, such as ant colony optimization, particle swarm optimization, and bat and firefly algorithms that have recently emerged in the field. In addition to documenting state-of-the-art developments, this book also discusses future research trends in bio-inspired computation, helping researchers establish new research avenues to pursue. Reviews the latest developments in bio-inspired computation in image processing Focuses on the introduction and analysis of the key bio-inspired methods and techniques Combines theory with real-world applications in image processing Helps solve complex problems in image and signal processing Contains a diverse range of self-contained case studies in real-world applications