Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Nonlinear Photonics and Novel Optical Phenomena

Nonlinear Photonics and Novel Optical Phenomena Author Zhigang Chen
ISBN-10 9781461435389
Release 2012-06-27
Pages 384
Download Link Click Here

Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, the theory of polariton solitons in semiconductor microcavities, and Terahertz waves.



Nonlinear Optics in Solids

Nonlinear Optics in Solids Author Ole Keller
ISBN-10 9783642842061
Release 2012-12-06
Pages 351
Download Link Click Here

In recent years one has witnessed in physics a substantial increase in interest in carrying out fundamental studies in the nonlinear optics of condensed matter. At the Danish universities, this increase has been especially pronounced at the Institute of Physics at the University of Aalborg, where the main activities are centered around fundamental research within the domains of nonlinear quantum optics, nonlinear optics of metals and superconductors, and nonlinear surface optics. In recognition of this it was decided to arrange the first international summer school on nonlinear optics in Denmark at the Institute of Physics at the University of Aalborg. This book is based on the lectures and contributed papers presented at this international summer school, which was held in the period 31 July-4 Au gust 1989. About 60 experienced and younger scientists from 12 different countries participated. Twenty-eight lectures were given by 14 distinguished scientists from the United States, Italy, France, Germany, Scotland, England, and Denmark. In addition to the lectures given by the invited speakers, 11 contributed papers were presented. The programme of the summer school em phasized a treatment of basic physical properties of the nonlinear interaction of light and condensed matter and both theoretical and experimental aspects were covered. Furthermore, general principles as well as topics of current interest in the research literature were discussed.



Nonlinearities in Periodic Structures and Metamaterials

Nonlinearities in Periodic Structures and Metamaterials Author Cornelia Denz
ISBN-10 9783642020667
Release 2010-03-11
Pages 292
Download Link Click Here

Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest. This book focuses on nonlinear optical phenomena in periodic media, such as photonic crystals, optically-induced, adaptive lattices, atomic lattices or metamaterials. The main purpose is to describe and overview new physical phenomena that result from the interplay between nonlinearities and structural periodicities and is a guide to actual and future developments for the expert reader in optical information processing, as well as in the physics of cold atoms in optical lattices.



Advances in Nonlinear Optics

Advances in Nonlinear Optics Author Xianfeng Chen
ISBN-10 9783110304497
Release 2015-01-01
Pages 381
Download Link Click Here

This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.



Nonlinear Optical Cavity Dynamics

Nonlinear Optical Cavity Dynamics Author Philippe Grelu
ISBN-10 9783527685813
Release 2015-12-23
Pages 450
Download Link Click Here

By recirculating light in a nonlinear propagation medium, the nonlinear optical cavity allows for countless options of light transformation and manipulation. In passive media, optical bistability and frequency conversion are central figures. In active media, laser light can be generated with versatile underlying dynamics. Emphasizing on ultrafast dynamics, the vital arena for the information technology, the soliton is a common conceptual keyword, thriving into its modern developments with the closely related denominations of dissipative solitons and cavity solitons. Recent technological breakthroughs in optical cavities, from micro-resonators to ultra-long fiber cavities, have entitled the exploration of nonlinear optical dynamics over unprecedented spatial and temporal orders of magnitude. By gathering key contributions by renowned experts, this book aims at bridging the gap between recent research topics with a view to foster cross-fertilization between research areas and stimulating creative optical engineering design.



Surface Plasmon Nanophotonics

Surface Plasmon Nanophotonics Author Mark L. Brongersma
ISBN-10 9781402043338
Release 2007-09-18
Pages 268
Download Link Click Here

This book discusses a new class of photonic devices, known as surface plasmon nanophotonic structures. The book highlights several exciting new discoveries, while providing a clear discussion of the underlying physics, the nanofabrication issues, and the materials considerations involved in designing plasmonic devices with new functionality. Chapters written by the leaders in the field of plasmonics provide a solid background to each topic.



Extreme Nonlinear Optics

Extreme Nonlinear Optics Author Martin Wegener
ISBN-10 9783540266884
Release 2006-03-30
Pages 223
Download Link Click Here

Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The following chapters gradually guide the student towards the current "state of the art" and provide a comprehensive overview of the field. Every chapter is accompanied by exercises to deepen the reader's understanding of important topics, with detailed solutions at the end of the book.



Laser Induced Dynamic Gratings

Laser Induced Dynamic Gratings Author Hans Joachim Eichler
ISBN-10 9783540396628
Release 2013-06-29
Pages 261
Download Link Click Here

The invention ofthe laser 25years ago resulted in powerfullight sources which led to the observation of unexpected and striking phenomena. New fields of science such as holography and nonlinear optics developed constituting the basis of this volume. The classical principle of linear superposition of light wavesdoes not hold anymore. Two laser beams crossing in a suitable material may produce a set of new beams with different directions and frequencies. The interaction of light waves can be understood by considering the optical grating structures which develop in the overlap region. The optical properties of matter become spatially modulated in the interference region of two light waves. Permanent holographic gratings have been produced in this way by photographic processes for many years. In contrast, dynamic or transient gratings disappear after the inducing light source, usually a laser, has been switched off. The grating amplitude is controlled by the light intensity. Dynamic gratings have been induced in a large number ofsolids, liquids, and gases, and are detected by diffraction, 'forced light scattering' of a third probing beam, or by self-diffraction of the light waves inducing the grating. The combined interference and diffraction effect corresponds to four-wave mixing (FWM) in the language of nonlinear optics. The process is called degenerate ifthe frequenciesofthe three incident wavesand the scattered wave are equal. Degenerate four-wave mixing (DFWM) is a simple method to achieve phase conjugation, i.e. to generate a wave which propagates time reversed with respect to an incident wave.



Introduction to Laser Physics

Introduction to Laser Physics Author K. Shimoda
ISBN-10 9783662135488
Release 2013-11-11
Pages 217
Download Link Click Here

Introduction to Laser Physics has been writing in one form or another for most of life. You can find so many inspiration from Introduction to Laser Physics also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Introduction to Laser Physics book for free.



Nonlinear Photonic Crystals

Nonlinear Photonic Crystals Author Richart E. Slusher
ISBN-10 9783662051443
Release 2013-06-29
Pages 376
Download Link Click Here

Nonlinear optical studies of periodic dielectric structures have blossomed in the past two decades. New fabrication techniques are producing fiber grating and multidimensional photonic crystals in materials where the refractive index can be varied by light pulses and beams. Gap solitons that can propagate at any velocity from zero to the speed of light and spatial solitons that prevent the diffractive spread of light in waveguide arrays are two examples of the new phenomena described in this book. Many new materials and structures are being developed that will impact new optical devices with applications in optical communications and optical data processing. All the above topics are addressed in detail in this book.



Optical Nonlinearities in Chalcogenide Glasses and Their Applications

Optical Nonlinearities in Chalcogenide Glasses and Their Applications Author A. Zakery
ISBN-10 9783540710660
Release 2007-06-19
Pages 199
Download Link Click Here

Photonics, whichusesphotonsforinformationandimageprocessing, islabeled as one of the technologies of the 21st century, for which nonlinear op- cal processes provide the key functions of frequency conversion and optical switching. Chalcogenide glasses are based on the chalcogen elements S, Se, and Te. These glasses are formed by the addition of other elements such as Ge, As, Sb, Ga, etc. These glasses are low-phonon energy materials and are generally transparentfromthevisibletoinfrared.Chalcogenideglassescanbedopedby rare-earth elements such as Er, Nd, Pr, etc., and hence numerous applications ofactiveopticaldeviceshavebeenproposed.Theseglassesareopticallyhighly nonlinear and could therefore be useful for all-optical switching. This book is a review of recent progress in the science and technology of chalcogenide glasses, with an emphasis on their nonlinear optical properties, forgraduatestudents, practisingengineersandscientistsfromawidemultid- ciplinary area such as physics, chemistry, electrical engineering and material science. Since the interest in this area is growing worldwide, a book dealing with this subject will be of great value to researchers of varied backgrounds. Chalcogenide glasses and their electronic, structural, and photoinduced properties are introduced. Techniques to characterize the linear and nonlinear optical properties of these glasses are introduced and used to measure the optical constants of chalcogenide glasses in the form of bulk, thin ?lm and ?ber. The possibilities of fabricating passive and active devices are present



Superlattices and Other Heterostructures

Superlattices and Other Heterostructures Author Eougenious L. Ivchenko
ISBN-10 9783642975899
Release 2012-12-06
Pages 370
Download Link Click Here

Superlattices and Other Heterostructures has been writing in one form or another for most of life. You can find so many inspiration from Superlattices and Other Heterostructures also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Superlattices and Other Heterostructures book for free.



Single Mode Fiber Optics

Single Mode Fiber Optics Author Jeunhomme
ISBN-10 0824781708
Release 1989-10-23
Pages 312
Download Link Click Here

A basic, unified reference, rather than a description of the current experimental activity, presenting the scientific and engineering principles of single-mode optical fibers. It does, however, update discussions to reflect developments since the 1983 first edition, particularly those spurred by the



Nonlinear Optics

Nonlinear Optics Author Chunfei Li
ISBN-10 9789811014888
Release 2016-08-26
Pages 386
Download Link Click Here

This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of optics, optoelectronics, fiber communication, information technology and materials etc.



Springer Handbook of Lasers and Optics

Springer Handbook of Lasers and Optics Author Frank Träger
ISBN-10 9783642194092
Release 2012-05-05
Pages 1694
Download Link Click Here

This new edition features numerous updates and additions. Especially 4 new chapters on Fiber Optics, Integrated Optics, Frequency Combs and Interferometry reflect the changes since the first edition. In addition, major complete updates for the chapters: Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit. Features Contains over 1000 two-color illustrations. Includes over 120 comprehensive tables with properties of optical materials and light sources. Emphasizes physical concepts over extensive mathematical derivations. Chapters with summaries, detailed index Delivers a wealth of up-to-date references.



Shaping Light in Nonlinear Optical Fibers

Shaping Light in Nonlinear Optical Fibers Author Sonia Boscolo
ISBN-10 9781119088127
Release 2017-05-30
Pages 504
Download Link Click Here

This book is a contemporary overview of selected topics in fiber optics. It focuses on the latest research results on light wave manipulation using nonlinear optical fibers, with the aim of capturing some of the most innovative developments on this topic. The book's scope covers both fundamentals and applications from both theoretical and experimental perspectives, with topics including linear and nonlinear effects, pulse propagation phenomena and pulse shaping, solitons and rogue waves, novel optical fibers, supercontinuum generation, polarisation management, optical signal processing, fiber lasers, optical wave turbulence, light propagation in disordered fiber media and slow and fast light. With contributions from leading-edge scientists in the field of nonlinear photonics and fiber optics, they offer an overview of the latest advances in their own research area. The listing of recent research papers at the end of each chapter is useful for researchers using the book as a reference. As the book addresses fundamental and practical photonics problems, it will also be of interest to, and benefit, broader academic communities, including areas such as nonlinear science, applied mathematics and physics and optical engineering. It offers the reader a wide and critical overview of the state-of-the-art within this practical – as well as fundamentally important and interesting – area of modern science, providing a useful reference which will encourage further research and advances in the field. Offers a study of various phenomena encountered by the manipulation of fundamental properties of light, such as the intensity profile, phase and state of polarisation, in optical fibers, as well as the new applications already made possible by the fiber-optic light wave manipulation technology Describes research results on light wave manipulation with particular emphasis on pulse shaping using nonlinear optics and guided waves, offering the most innovative developments in this area The editors are leading experts in the field and have sourced contributions from leading-edge scientists and their colleagues in the field of nonlinear photonics and fiber optics, providing an overview of the latest advances in their own research area



Coherent Optics

Coherent Optics Author Werner Lauterborn
ISBN-10 9783662052730
Release 2013-03-09
Pages 346
Download Link Click Here

Since the advent of the laser, coherent optics has developed at an ever increasing pace. There is no doubt about the reason. Coherent light, with its properties so different from the light we are surrounded by, lends itself to numerous applications in science, technology, and life. The bandwidth of coherent optics reaches from holography and interferometry, with its gravitational wave detectors, to the CD player for music, movies, and computers; from the laser scalpel, which allows surgical cutting in the interior of the eye without destruction of the layers penetrated in front of it, to optical information and data processing with its great impact on society. According to its importance, the foundations of coherent optics should be conveyed to students of natural sciences as early as possible to better prepare them for their future careers as physicists or engineers. The present book tries to serve this need: to promote the foundations of coherent optics. Special attention is paid to a thorough presentation of the fundamentals. This should enable the reader to follow the contemporary literature from a firm basis. The wealth of material, of course, makes necessary a restriction of the topics included. Therefore, from the main areas of optics, wave optics and the classical description oflight is given most ofthe space available. The book starts with a quick trip through the history of physics from the viewpoint of optics.