Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Nonparametric Statistics

Nonparametric Statistics Author Gregory W. Corder
ISBN-10 9781118840429
Release 2014-04-14
Pages 288
Download Link Click Here

“…a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught." –CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical power SPSS® (Version 21) software and updated screen captures to demonstrate how to perform and recognize the steps in the various procedures Data sets and odd-numbered solutions provided in an appendix, and tables of critical values Supplementary material to aid in reader comprehension, which includes: narrated videos and screen animations with step-by-step instructions on how to follow the tests using SPSS; online decision trees to help users determine the needed type of statistical test; and additional solutions not found within the book.



Nonparametric Statistics for Non Statisticians

Nonparametric Statistics for Non Statisticians Author Gregory W. Corder
ISBN-10 9781118211250
Release 2011-09-20
Pages 264
Download Link Click Here

Nonparametric Statistics for Non Statisticians has been writing in one form or another for most of life. You can find so many inspiration from Nonparametric Statistics for Non Statisticians also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Nonparametric Statistics for Non Statisticians book for free.



Nonparametric Statistical Tests

Nonparametric Statistical Tests Author Markus Neuhauser
ISBN-10 9781439867044
Release 2011-12-19
Pages 248
Download Link Click Here

Nonparametric Statistical Tests: A Computational Approach describes classical nonparametric tests, as well as novel and little-known methods such as the Baumgartner-Weiss-Schindler and the Cucconi tests. The book presents SAS and R programs, allowing readers to carry out the different statistical methods, such as permutation and bootstrap tests. The author considers example data sets in each chapter to illustrate methods. Numerous real-life data from various areas, including the bible, and their analyses provide for greatly diversified reading. The book covers: Nonparametric two-sample tests for the location-shift model, specifically the Fisher-Pitman permutation test, the Wilcoxon rank sum test, and the Baumgartner-Weiss-Schindler test Permutation tests, location-scale tests, tests for the nonparametric Behrens-Fisher problem, and tests for a difference in variability Tests for the general alternative, including the (Kolmogorov-)Smirnov test, ordered categorical, and discrete numerical data Well-known one-sample tests such as the sign test and Wilcoxon’s signed rank test, a modification suggested by Pratt (1959), a permutation test with original observations, and a one-sample bootstrap test are presented. Tests for more than two groups, the following tests are described in detail: the Kruskal-Wallis test, the permutation F test, the Jonckheere-Terpstra trend test, tests for umbrella alternatives, and the Friedman and Page tests for multiple dependent groups The concepts of independence and correlation, and stratified tests such as the van Elteren test and combination tests The applicability of computer-intensive methods such as bootstrap and permutation tests for non-standard situations and complex designs Although the major development of nonparametric methods came to a certain end in the 1970s, their importance undoubtedly persists. What is still needed is a computer assisted evaluation of their main properties. This book closes that gap.



Robust Nonparametric Statistical Methods Second Edition

Robust Nonparametric Statistical Methods  Second Edition Author Thomas P. Hettmansperger
ISBN-10 9781439809099
Release 2010-12-20
Pages 554
Download Link Click Here

Presenting an extensive set of tools and methods for data analysis, Robust Nonparametric Statistical Methods, Second Edition covers univariate tests and estimates with extensions to linear models, multivariate models, times series models, experimental designs, and mixed models. It follows the approach of the first edition by developing rank-based methods from the unifying theme of geometry. This edition, however, includes more models and methods and significantly extends the possible analyses based on ranks. New to the Second Edition A new section on rank procedures for nonlinear models A new chapter on models with dependent error structure, covering rank methods for mixed models, general estimating equations, and time series New material on the development of computationally efficient affine invariant/equivariant sign methods based on transform-retransform techniques in multivariate models Taking a comprehensive, unified approach to statistical analysis, the book continues to describe one- and two-sample problems, the basic development of rank methods in the linear model, and fixed effects experimental designs. It also explores models with dependent error structure and multivariate models. The authors illustrate the implementation of the methods using many real-world examples and R. More information about the data sets and R packages can be found at www.crcpress.com



Data Analysis in Business Research

Data Analysis in Business Research Author D Israel
ISBN-10 9788178298757
Release 2009-01-06
Pages 320
Download Link Click Here

While there are books focusing on parametric tests, the domain of nonparametric tests is mostly unexplored. Data Analysis in Business Research: A Step by Step Nonparametric Approach brings under one umbrella all the major nonparametric statistical tools that can be used by undergraduate and postgraduate students of all disciplines, especially students of Research Methods in Social Sciences and Management Studies, in their dissertation work. Students face difficulty in analyzing data collected from small samples; they end up reporting mere percentage analysis which results in the loss of information collected. Hence there is a need to create awareness among students and researchers about the application of major nonparametric tools that can be applied confidently without worrying about sample size, scale of measurement, normality assumptions or other parameters of that nature. The lucid presentation of the step-by-step procedures, explaining in simple English how to perform each of the major nonparametric tests, is a major attraction of the book. The book, which also has a comprehensive question bank, assumes minimal or little knowledge of statistics on the part of the reader. This book will also be informative for Marketing Research professionals and organisations, consultancies and organisations of economic research.



Nonparametric Statistics with Applications to Science and Engineering

Nonparametric Statistics with Applications to Science and Engineering Author Paul H. Kvam
ISBN-10 0470168692
Release 2007-08-24
Pages 448
Download Link Click Here

A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.



Study Guide for Use with Elementary Statistics

Study Guide for Use with Elementary Statistics Author Allan G. Bluman
ISBN-10 0072549114
Release 2003-05-21
Pages 240
Download Link Click Here

Elementary Statistics is geared toward students who do not have a strong mathematics background and have completed at least high school algebra. This book uses a nontheoretical approach in which concepts are explained intuitively and are supported by examples. There are no formal proofs in this book. The statistical applications are drawn from various disciplines, including natural sciences, social sciences, business, economics, and computer science.



All of Nonparametric Statistics

All of Nonparametric Statistics Author Larry Wasserman
ISBN-10 0387306234
Release 2006-09-10
Pages 270
Download Link Click Here

This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.



Nonparametric Statistics for Health Care Research

Nonparametric Statistics for Health Care Research Author Marjorie A. Pett
ISBN-10 9781483324524
Release 2015-06-29
Pages 472
Download Link Click Here

What do you do when you realize that the data set from the study that you have just completed violates the sample size or other requirements needed to apply parametric statistics? Nonparametric Statistics for Health Care Research by Marjorie A. Pett was developed for such scenarios—research undertaken with limited funds, often using a small sample size, with the primary objective of improving client care and obtaining better client outcomes. Covering the most commonly used nonparametric statistical techniques available in statistical packages and on open-resource statistical websites, this well-organized and accessible Second Edition helps readers, including those beyond the health sciences field, to understand when to use a particular nonparametric statistic, how to generate and interpret the resulting computer printouts, and how to present the results in table and text format.



Introduction to Nonparametric Statistics for the Biological Sciences Using R

Introduction to Nonparametric Statistics for the Biological Sciences Using R Author Thomas W. MacFarland
ISBN-10 9783319306346
Release 2016-07-06
Pages 329
Download Link Click Here

This book contains a rich set of tools for nonparametric analyses, and the purpose of this supplemental text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses and tests using R to broadly compare differences between data sets and statistical approach. This supplemental text is intended for: Upper-level undergraduate and graduate students majoring in the biological sciences, specifically those in agriculture, biology, and health science - both students in lecture-type courses and also those engaged in research projects, such as a master's thesis or a doctoral dissertation And biological researchers at the professional level without a nonparametric statistics background but who regularly work with data more suitable to a nonparametric approach to data analysis



Nonparametric Statistics for Social and Behavioral Sciences

Nonparametric Statistics for Social and Behavioral Sciences Author M. Kraska-MIller
ISBN-10 9781466507623
Release 2013-12-09
Pages 260
Download Link Click Here

Incorporating a hands-on pedagogical approach, Nonparametric Statistics for Social and Behavioral Sciences presents the concepts, principles, and methods used in performing many nonparametric procedures. It also demonstrates practical applications of the most common nonparametric procedures using IBM’s SPSS software. This text is the only current nonparametric book written specifically for students in the behavioral and social sciences. Emphasizing sound research designs, appropriate statistical analyses, and accurate interpretations of results, the text: Explains a conceptual framework for each statistical procedure Presents examples of relevant research problems, associated research questions, and hypotheses that precede each procedure Details SPSS paths for conducting various analyses Discusses the interpretations of statistical results and conclusions of the research With minimal coverage of formulas, the book takes a nonmathematical approach to nonparametric data analysis procedures and shows students how they are used in research contexts. Each chapter includes examples, exercises, and SPSS screen shots illustrating steps of the statistical procedures and resulting output.



Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis

Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis Author Victor Patrangenaru
ISBN-10 9781439820513
Release 2015-09-18
Pages 517
Download Link Click Here

A New Way of Analyzing Object Data from a Nonparametric Viewpoint Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis provides one of the first thorough treatments of the theory and methodology for analyzing data on manifolds. It also presents in-depth applications to practical problems arising in a variety of fields, including statistics, medical imaging, computer vision, pattern recognition, and bioinformatics. The book begins with a survey of illustrative examples of object data before moving to a review of concepts from mathematical statistics, differential geometry, and topology. The authors next describe theory and methods for working on various manifolds, giving a historical perspective of concepts from mathematics and statistics. They then present problems from a wide variety of areas, including diffusion tensor imaging, similarity shape analysis, directional data analysis, and projective shape analysis for machine vision. The book concludes with a discussion of current related research and graduate-level teaching topics as well as considerations related to computational statistics. Researchers in diverse fields must combine statistical methodology with concepts from projective geometry, differential geometry, and topology to analyze data objects arising from non-Euclidean object spaces. An expert-driven guide to this approach, this book covers the general nonparametric theory for analyzing data on manifolds, methods for working with specific spaces, and extensive applications to practical research problems. These problems show how object data analysis opens a formidable door to the realm of big data analysis.



Introduction to Nonparametric Regression

Introduction to Nonparametric Regression Author K. Takezawa
ISBN-10 9780471771449
Release 2005-12-02
Pages 640
Download Link Click Here

An easy-to-grasp introduction to nonparametric regression This book's straightforward, step-by-step approach provides an excellent introduction to the field for novices of nonparametric regression. Introduction to Nonparametric Regression clearly explains the basic concepts underlying nonparametric regression and features: * Thorough explanations of various techniques, which avoid complex mathematics and excessive abstract theory to help readers intuitively grasp the value of nonparametric regression methods * Statistical techniques accompanied by clear numerical examples that further assist readers in developing and implementing their own solutions * Mathematical equations that are accompanied by a clear explanation of how the equation was derived The first chapter leads with a compelling argument for studying nonparametric regression and sets the stage for more advanced discussions. In addition to covering standard topics, such as kernel and spline methods, the book provides in-depth coverage of the smoothing of histograms, a topic generally not covered in comparable texts. With a learning-by-doing approach, each topical chapter includes thorough S-Plus? examples that allow readers to duplicate the same results described in the chapter. A separate appendix is devoted to the conversion of S-Plus objects to R objects. In addition, each chapter ends with a set of problems that test readers' grasp of key concepts and techniques and also prepares them for more advanced topics. This book is recommended as a textbook for undergraduate and graduate courses in nonparametric regression. Only a basic knowledge of linear algebra and statistics is required. In addition, this is an excellent resource for researchers and engineers in such fields as pattern recognition, speech understanding, and data mining. Practitioners who rely on nonparametric regression for analyzing data in the physical, biological, and social sciences, as well as in finance and economics, will find this an unparalleled resource.



Nonparametric Statistical Methods For Complete and Censored Data

Nonparametric Statistical Methods For Complete and Censored Data Author M.M. Desu
ISBN-10 1584883197
Release 2003-09-29
Pages 384
Download Link Click Here

Balancing the "cookbook" approach of some texts with the more mathematical approach of others, Nonparametric Statistical Methods for Complete and Censored Data introduces commonly used non-parametric methods for complete data and extends those methods to right censored data analysis. Whenever possible, the authors derive their methodology from the general theory of statistical inference and introduce the concepts intuitively for students with minimal backgrounds. Derivations and mathematical details are relegated to appendices at the end of each chapter, which allows students to easily proceed through each chapter without becoming bogged down in a lot of mathematics. In addition to the nonparametric methods for analyzing complete and censored data, the book covers optimal linear rank statistics, clinical equivalence, analysis of block designs, and precedence tests. To make the material more accessible and practical, the authors use SAS programs to illustrate the various methods included. Exercises in each chapter, SAS code, and a clear, accessible presentation make this an outstanding text for a one-semester senior or graduate-level course in nonparametric statistics for students in a variety of disciplines, from statistics and biostatistics to business, psychology, and the social scientists. Prerequisites: Students will need a solid background in calculus and a two-semester course in mathematical statistics.



A Contingency Table Approach to Nonparametric Testing

A Contingency Table Approach to Nonparametric Testing Author J.C.W. Rayner
ISBN-10 9781420035957
Release 2000-12-07
Pages 264
Download Link Click Here

Most texts on nonparametric techniques concentrate on location and linear-linear (correlation) tests, with less emphasis on dispersion effects and linear-quadratic tests. Tests for higher moment effects are virtually ignored. Using a fresh approach, A Contingency Table Approach to Nonparametric Testing unifies and extends the popular, standard tests by linking them to tests based on models for data that can be presented in contingency tables. This approach unifies popular nonparametric statistical inference and makes the traditional, most commonly performed nonparametric analyses much more complete and informative. It also makes tied data easily handled, and almost exact Monte Carlo p-values can be obtained. With data in contingency tables, one can then calculate a Pearson-type, chi-squared statistic and its components. For univariate data, the initial tests based on these components detect mean differences between treatments. For bivariate data, they detect correlations. This approach leads to tests that detect variance, skewness, and higher moment differences between treatments with univariate data, and higher bivariate moment differences with bivariate data. Although the methods advanced in this book have their genesis in traditional nonparametrics, incorporating the power of modern computers makes the approach more complete and more valid than previously possible. The authors' unified treatment and readable style make the subject easy to follow and the techniques easily implemented, whether you are a fledgling or a seasoned researcher.



Elementary statistics

Elementary statistics Author Allan G. Bluman
ISBN-10 0072549149
Release 2004
Pages 1
Download Link Click Here

Elementary statistics has been writing in one form or another for most of life. You can find so many inspiration from Elementary statistics also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Elementary statistics book for free.



Bootstrapping

Bootstrapping Author Christopher Z. Mooney
ISBN-10 080395381X
Release 1993-08-09
Pages 73
Download Link Click Here

Bootstrapping, a computational nonparametric technique for "re-sampling," enables researchers to draw a conclusion about the characteristics of a population strictly from the existing sample rather than by making parametric assumptions about the estimator. Using real data examples from per capita personal income to median preference differences between legislative committee members and the entire legislature, Mooney and Duval discuss how to apply bootstrapping when the underlying sampling distribution of the statistics cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, they show the advantages and limitations of four bootstrap confidence interval methods: normal approximation, percenti