Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Numerical Analysis for Statisticians

Numerical Analysis for Statisticians Author Kenneth Lange
ISBN-10 9781441959454
Release 2010-05-17
Pages 600
Download Link Click Here

Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.



Numerical Analysis for Statisticians

Numerical Analysis for Statisticians Author Kenneth Lange
ISBN-10 9781441959447
Release 2010-06-15
Pages 600
Download Link Click Here

Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.



Numerical Analysis for Statisticians

Numerical Analysis for Statisticians Author Kenneth Lange
ISBN-10 9780387227245
Release 2006-04-06
Pages 356
Download Link Click Here

Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.



Numerical Methods of Statistics

Numerical Methods of Statistics Author John F. Monahan
ISBN-10 9781139498005
Release 2011-04-18
Pages
Download Link Click Here

This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mathematical tools to statistical problems. The first half of the book offers a basic background in numerical analysis that emphasizes issues important to statisticians. The next several chapters cover a broad array of statistical tools, such as maximum likelihood and nonlinear regression. The author also treats the application of numerical tools; numerical integration and random number generation are explained in a unified manner reflecting complementary views of Monte Carlo methods. Each chapter contains exercises that range from simple questions to research problems. Most of the examples are accompanied by demonstration and source code available from the author's website. New in this second edition are demonstrations coded in R, as well as new sections on linear programming and the Nelder–Mead search algorithm.



Elements of Statistical Computing

Elements of Statistical Computing Author R.A. Thisted
ISBN-10 9781351452748
Release 2017-10-19
Pages 448
Download Link Click Here

Statistics and computing share many close relationships. Computing now permeates every aspect of statistics, from pure description to the development of statistical theory. At the same time, the computational methods used in statistical work span much of computer science. Elements of Statistical Computing covers the broad usage of computing in statistics. It provides a comprehensive account of the most important computational statistics. Included are discussions of numerical analysis, numerical integration, and smoothing. The author give special attention to floating point standards and numerical analysis; iterative methods for both linear and nonlinear equation, such as Gauss-Seidel method and successive over-relaxation; and computational methods for missing data, such as the EM algorithm. Also covered are new areas of interest, such as the Kalman filter, projection-pursuit methods, density estimation, and other computer-intensive techniques.



Mathematical and Statistical Methods for Genetic Analysis

Mathematical and Statistical Methods for Genetic Analysis Author Kenneth Lange
ISBN-10 9781475727395
Release 2013-04-17
Pages 265
Download Link Click Here

Geneticists now stand on the threshold of sequencing the genome in its entirety. The unprecedented insights into human disease and evolution offered by mapping and sequencing are transforming medicine and agriculture. This revolution depends vitally on the contributions made by applied mathematicians, statisticians, and computer scientists. Kenneth Lange has written a book to enable graduate students in the mathematical sciences to understand and model the epidemiological and experimental data encountered in genetics research. Mathematical, statistical, and computational principles relevant to this task are developed hand-in-hand with applications to gene mapping, risk prediction, and the testing of epidemiological hypotheses. The book covers many topics previously only accessible in journal articles, such as pedigree analysis algorithms, Markov chain, Monte Carlo methods, reconstruction of evolutionary trees, radiation hybrid mapping, and models of recombination. The whole is backed by numerous exercise sets.



Numerical Methods of Statistics

Numerical Methods of Statistics Author John F. Monahan
ISBN-10 1139077554
Release 2014-05-14
Pages 465
Download Link Click Here

This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mathematical tools to statistical problems. The first half of the book offers a basic background in numerical analysis that emphasizes issues important to statisticians. The next several chapters cover a broad array of statistical tools, such as maximum likelihood and nonlinear regression. The author also treats the application of numerical tools; numerical integration and random number generation are explained in a unified manner reflecting complementary views of Monte Carlo methods. Each chapter contains exercises that range from simple questions to research problems. Most of the examples are accompanied by demonstration and source code available in from the author's Web site. New in this second edition are demonstrations coded in R, as well as new sections on linear programming and the Nelder-Mead search algorithm.



Optimization

Optimization Author Kenneth Lange
ISBN-10 9781461458388
Release 2013-03-19
Pages 529
Download Link Click Here

Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students’ skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction. Its stress on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes students in applied mathematics, computational biology, computer science, economics, and physics who want to see rigorous mathematics combined with real applications. In this second edition the emphasis remains on finite-dimensional optimization. New material has been added on the MM algorithm, block descent and ascent, and the calculus of variations. Convex calculus is now treated in much greater depth. Advanced topics such as the Fenchel conjugate, subdifferentials, duality, feasibility, alternating projections, projected gradient methods, exact penalty methods, and Bregman iteration will equip students with the essentials for understanding modern data mining techniques in high dimensions.



Elements of Computational Statistics

Elements of Computational Statistics Author James E. Gentle
ISBN-10 9780387216119
Release 2006-04-18
Pages 420
Download Link Click Here

Will provide a more elementary introduction to these topics than other books available; Gentle is the author of two other Springer books



Introductory Statistics with R

Introductory Statistics with R Author Peter Dalgaard
ISBN-10 9780387790541
Release 2008-06-27
Pages 364
Download Link Click Here

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.



Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R Author James P Howard, II
ISBN-10 9781351646505
Release 2017-07-14
Pages 277
Download Link Click Here

Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.



Numerical Linear Algebra for Applications in Statistics

Numerical Linear Algebra for Applications in Statistics Author James E. Gentle
ISBN-10 9781461206231
Release 2012-12-06
Pages 221
Download Link Click Here

Accurate and efficient computer algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Regardless of the software system used, the book describes and gives examples of the use of modern computer software for numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes the relevant properties of matrix inverses, factorisations, matrix and vector norms, and other topics in linear algebra. The book is essentially self- contained, with the topics addressed constituting the essential material for an introductory course in statistical computing. Numerous exercises allow the text to be used for a first course in statistical computing or as supplementary text for various courses that emphasise computations.



Statistical Computing in C and R

Statistical Computing in C   and R Author Randall L. Eubank
ISBN-10 9781420066500
Release 2011-12-01
Pages 556
Download Link Click Here

With the advancement of statistical methodology inextricably linked to the use of computers, new methodological ideas must be translated into usable code and then numerically evaluated relative to competing procedures. In response to this, Statistical Computing in C++ and R concentrates on the writing of code rather than the development and study of numerical algorithms per se. The book discusses code development in C++ and R and the use of these symbiotic languages in unison. It emphasizes that each offers distinct features that, when used in tandem, can take code writing beyond what can be obtained from either language alone. The text begins with some basics of object-oriented languages, followed by a "boot-camp" on the use of C++ and R. The authors then discuss code development for the solution of specific computational problems that are relevant to statistics including optimization, numerical linear algebra, and random number generation. Later chapters introduce abstract data structures (ADTs) and parallel computing concepts. The appendices cover R and UNIX Shell programming. Features Includes numerous student exercises ranging from elementary to challenging Integrates both C++ and R for the solution of statistical computing problems Uses C++ code in R and R functions in C++ programs Provides downloadable programs, available from the authors’ website The translation of a mathematical problem into its computational analog (or analogs) is a skill that must be learned, like any other, by actively solving relevant problems. The text reveals the basic principles of algorithmic thinking essential to the modern statistician as well as the fundamental skill of communicating with a computer through the use of the computer languages C++ and R. The book lays the foundation for original code development in a research environment.



MM Optimization Algorithms

MM Optimization Algorithms Author Kenneth Lange
ISBN-10 9781611974393
Release 2016-07-11
Pages 223
Download Link Click Here

MM Optimization Algorithms÷offers an overview of the MM principle, a device for deriving optimization algorithms satisfying the ascent or descent property. These algorithms can separate the variables of a problem, avoid large matrix inversions, linearize a problem, restore symmetry, deal with equality and inequality constraints gracefully, and turn a nondifferentiable problem into a smooth problem.÷ The author presents the first extended treatment of MM algorithms, which are ideal for high-dimensional optimization problems in data mining, imaging, and genomics; derives numerous algorithms from a broad diversity of application areas, with a particular emphasis on statistics, biology, and data mining; and summarizes a large amount of literature that has not reached book form before.÷



Software for Data Analysis

Software for Data Analysis Author John Chambers
ISBN-10 0387759360
Release 2008-06-14
Pages 500
Download Link Click Here

John Chambers turns his attention to R, the enormously successful open-source system based on the S language. His book guides the reader through programming with R, beginning with simple interactive use and progressing by gradual stages, starting with simple functions. More advanced programming techniques can be added as needed, allowing users to grow into software contributors, benefiting their careers and the community. R packages provide a powerful mechanism for contributions to be organized and communicated. This is the only advanced programming book on R, written by the author of the S language from which R evolved.



Compact Numerical Methods for Computers

Compact Numerical Methods for Computers Author John C. Nash
ISBN-10 085274319X
Release 1990-01-01
Pages 278
Download Link Click Here

This second edition of Compact Numerical Methods for Computers presents reliable yet compact algorithms for computational problems. As in the previous edition, the author considers specific mathematical problems of wide applicability, develops approaches to a solution and the consequent algorithm, and provides the program steps. He emphasizes useful applicable methods from various scientific research fields, ranging from mathematical physics to commodity production modeling. While the ubiquitous personal computer is the particular focus, the methods have been implemented on computers as small as a programmable pocket calculator and as large as a highly parallel supercomputer. New to the Second Edition Presents program steps as Turbo Pascal code Includes more algorithmic examples Contains an extended bibliography The accompanying software (available by coupon at no charge) includes not only the algorithm source codes, but also driver programs, example data, and several utility codes to help in the software engineering of end-user programs. The codes are designed for rapid implementation and reliable use in a wide variety of computing environments. Scientists, statisticians, engineers, and economists who prepare/modify programs for use in their work will find this resource invaluable. Moreover, since little previous training in numerical analysis is required, the book can also be used as a supplementary text for courses on numerical methods and mathematical software.



Computer Intensive Methods in Statistics

Computer Intensive Methods in Statistics Author Wolfgang Härdle
ISBN-10 9783642524684
Release 2013-11-27
Pages 176
Download Link Click Here

Computer Intensive Methods in Statistics has been writing in one form or another for most of life. You can find so many inspiration from Computer Intensive Methods in Statistics also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Computer Intensive Methods in Statistics book for free.