Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws Author LEVEQUE
ISBN-10 9783034851169
Release 2013-11-11
Pages 214
Download Link Click Here

These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.



Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws Author Randall J. LeVeque
ISBN-10 STANFORD:36105113906429
Release 1990
Pages 214
Download Link Click Here

Numerical Methods for Conservation Laws has been writing in one form or another for most of life. You can find so many inspiration from Numerical Methods for Conservation Laws also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Numerical Methods for Conservation Laws book for free.



Numerical Partial Differential Equations Finite Difference Methods

Numerical Partial Differential Equations  Finite Difference Methods Author J.W. Thomas
ISBN-10 9781489972781
Release 2013-12-01
Pages 437
Download Link Click Here

What makes this book stand out from the competition is that it is more computational. Once done with both volumes, readers will have the tools to attack a wider variety of problems than those worked out in the competitors' books. The author stresses the use of technology throughout the text, allowing students to utilize it as much as possible.



Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws Author Jan S. Hesthaven
ISBN-10 9781611975109
Release 2018-01-30
Pages 570
Download Link Click Here

Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.



Finite Volume Methods for Hyperbolic Problems

Finite Volume Methods for Hyperbolic Problems Author Randall J. LeVeque
ISBN-10 9781139434188
Release 2002-08-26
Pages
Download Link Click Here

This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.



Hyperbolic Systems of Conservation Laws

Hyperbolic Systems of Conservation Laws Author Philippe G. LeFloch
ISBN-10 3764366877
Release 2002-07-01
Pages 294
Download Link Click Here

This book is a self-contained exposition of the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. The text covers the existence, uniqueness, and continuous dependence of classical (compressive) entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The study of nonclassical shock waves is based on the concept of a kinetic relation introduced by the author for general hyperbolic systems and derived from singular limits of hyperbolic conservation laws with balanced diffusion and dispersion terms. The systems of partial differential equations under consideration arise in many areas of continuum physics. No familiarity with the subject is assumed, so the book should be particularly suitable for graduate students and researchers interested in recent developments about nonlinear partial differential equations and the mathematical aspects of shock waves and propagating phase boundaries.



Numerical Approximation of Hyperbolic Systems of Conservation Laws

Numerical Approximation of Hyperbolic Systems of Conservation Laws Author Edwige Godlewski
ISBN-10 9781461207139
Release 2013-11-21
Pages 510
Download Link Click Here

This work is devoted to the theory and approximation of nonlinear hyper bolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors, and we shall make frequent references to Godlewski and Raviart (1991) (hereafter noted G. R. ), though the present volume can be read independently. This earlier publication, apart from a first chap ter, especially covered the scalar case. Thus, we shall detail here neither the mathematical theory of multidimensional scalar conservation laws nor their approximation in the one-dimensional case by finite-difference con servative schemes, both of which were treated in G. R. , but we shall mostly consider systems. The theory for systems is in fact much more difficult and not at all completed. This explains why we shall mainly concentrate on some theoretical aspects that are needed in the applications, such as the solution of the Riemann problem, with occasional insights into more sophisticated problems. The present book is divided into six chapters, including an introductory chapter. For the reader's convenience, we shall resume in this Introduction the notions that are necessary for a self-sufficient understanding of this book -the main definitions of hyperbolicity, weak solutions, and entropy present the practical examples that will be thoroughly developed in the following chapters, and recall the main results concerning the scalar case.



Riemann Solvers and Numerical Methods for Fluid Dynamics

Riemann Solvers and Numerical Methods for Fluid Dynamics Author Eleuterio F. Toro
ISBN-10 9783662039151
Release 2013-04-17
Pages 624
Download Link Click Here

High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.



Theory and Practice of Finite Elements

Theory and Practice of Finite Elements Author Alexandre Ern
ISBN-10 9781475743555
Release 2013-03-09
Pages 526
Download Link Click Here

This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.



Numerical Solution of Partial Differential Equations

Numerical Solution of Partial Differential Equations Author K. W. Morton
ISBN-10 9781139443203
Release 2005-04-11
Pages
Download Link Click Here

This is the 2005 second edition of a highly successful and well-respected textbook on the numerical techniques used to solve partial differential equations arising from mathematical models in science, engineering and other fields. The authors maintain an emphasis on finite difference methods for simple but representative examples of parabolic, hyperbolic and elliptic equations from the first edition. However this is augmented by new sections on finite volume methods, modified equation analysis, symplectic integration schemes, convection-diffusion problems, multigrid, and conjugate gradient methods; and several sections, including that on the energy method of analysis, have been extensively rewritten to reflect modern developments. Already an excellent choice for students and teachers in mathematics, engineering and computer science departments, the revised text includes more latest theoretical and industrial developments.



Time Dependent Problems and Difference Methods

Time Dependent Problems and Difference Methods Author Bertil Gustafsson
ISBN-10 9781118548523
Release 2013-07-18
Pages 528
Download Link Click Here

Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.



Spectral and High Order Methods for Partial Differential Equations

Spectral and High Order Methods for Partial Differential Equations Author Jan S. Hesthaven
ISBN-10 3642153372
Release 2010-10-29
Pages 510
Download Link Click Here

The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.



Front Tracking for Hyperbolic Conservation Laws

Front Tracking for Hyperbolic Conservation Laws Author Helge Holden
ISBN-10 9783662475072
Release 2015-12-10
Pages 517
Download Link Click Here

This is the second edition of a well-received book providing the fundamentals of the theory hyperbolic conservation laws. Several chapters have been rewritten, new material has been added, in particular, a chapter on space dependent flux functions and the detailed solution of the Riemann problem for the Euler equations. Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. From the reviews of the first edition: "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm.



Lectures on Nonlinear Evolution Equations

Lectures on Nonlinear Evolution Equations Author Reinhard Racke
ISBN-10 9783319218731
Release 2015-08-31
Pages 306
Download Link Click Here

This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behaviour of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial boundary value problems and for open questions are provided. In this second edition, initial-boundary value problems in waveguides are additionally considered.



Computational Methods for Geodynamics

Computational Methods for Geodynamics Author Alik Ismail-Zadeh
ISBN-10 9781139489355
Release 2010-07-22
Pages
Download Link Click Here

Written as both a textbook and a handy reference, this text deliberately avoids complex mathematics assuming only basic familiarity with geodynamic theory and calculus. Here, the authors have brought together the key numerical techniques for geodynamic modeling, demonstrations of how to solve problems including lithospheric deformation, mantle convection and the geodynamo. Building from a discussion of the fundamental principles of mathematical and numerical modeling, the text moves into critical examinations of each of the different techniques before concluding with a detailed analysis of specific geodynamic applications. Key differences between methods and their respective limitations are also discussed - showing readers when and how to apply a particular method in order to produce the most accurate results. This is an essential text for advanced courses on numerical and computational modeling in geodynamics and geophysics, and an invaluable resource for researchers looking to master cutting-edge techniques. Links to supplementary computer codes are available online.



Numerical Methods for Eulerian and Lagrangian Conservation Laws

Numerical Methods for Eulerian and Lagrangian Conservation Laws Author Bruno Després
ISBN-10 9783319503554
Release 2017-08-08
Pages 349
Download Link Click Here

This book focuses on the interplay between Eulerian and Lagrangian conservation laws for systems that admit physical motivation and originate from continuum mechanics. Ultimately, it highlights what is specific to and beneficial in the Lagrangian approach and its numerical methods. The two first chapters present a selection of well-known features of conservation laws and prepare readers for the subsequent chapters, which are dedicated to the analysis and discretization of Lagrangian systems. The text is at the frontier of applied mathematics and scientific computing and appeals to students and researchers interested in Lagrangian-based computational fluid dynamics. It also serves as an introduction to the recent corner-based Lagrangian finite volume techniques.



SIAM Journal on Numerical Analysis

SIAM Journal on Numerical Analysis Author
ISBN-10 UCR:31210016217125
Release 2003-05
Pages
Download Link Click Here

SIAM Journal on Numerical Analysis has been writing in one form or another for most of life. You can find so many inspiration from SIAM Journal on Numerical Analysis also informative, and entertaining. Click DOWNLOAD or Read Online button to get full SIAM Journal on Numerical Analysis book for free.