Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Numerical Partial Differential Equations for Environmental Scientists and Engineers

Numerical Partial Differential Equations for Environmental Scientists and Engineers Author Daniel R. Lynch
ISBN-10 9780387236209
Release 2006-06-02
Pages 388
Download Link Click Here

For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.



Numerical Solution of Partial Differential Equations in Science and Engineering

Numerical Solution of Partial Differential Equations in Science and Engineering Author Leon Lapidus
ISBN-10 9781118031216
Release 2011-02-14
Pages 677
Download Link Click Here

From the reviews of Numerical Solution of Partial Differential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, even exhaustive, survey of the subject . . . [It] is unique in that it covers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic) mode of presentation. Many different computational schemes are described in great detail . . . Numerous practical examples and applications are described from beginning to the end, often with calculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages to lucid developments of the methods [for solving partial differential equations] . . . the writing is very polished and I found it a pleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen and Eli L. Isaacson. A modern, practical look at numerical analysis, this book guides readers through a broad selection of numerical methods, implementation, and basic theoretical results, with an emphasis on methods used in scientific computation involving differential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan. Presenting an easily accessible treatment of mathematical methods for scientists and engineers, this acclaimed work covers fluid mechanics and calculus of variations as well as more modern methods-dimensional analysis and scaling, nonlinear wave propagation, bifurcation, and singular perturbation. 1996 (0-471-16513-1) 496 pp.



Numerical Methods for Solving Partial Differential Equations

Numerical Methods for Solving Partial Differential Equations Author George F. Pinder
ISBN-10 9781119316114
Release 2018-01-11
Pages 320
Download Link Click Here

A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.



Advanced Topics in Computational Partial Differential Equations

Advanced Topics in Computational Partial Differential Equations Author Hans Petter Langtangen
ISBN-10 9783642182372
Release 2012-09-22
Pages 663
Download Link Click Here

A gentle introduction to advanced topics such as parallel computing, multigrid methods, and special methods for systems of PDEs. The goal of all chapters is to ‘compute’ solutions to problems, hence algorithmic and software issues play a central role. All software examples use the Diffpack programming environment - some experience with Diffpack is required. There are also some chapters covering complete applications, i.e., the way from a model, expressed as systems of PDEs, through to discretization methods, algorithms, software design, verification, and computational examples. Suitable for readers with a background in basic finite element and finite difference methods for partial differential equations.



Scientific Computing and Differential Equations

Scientific Computing and Differential Equations Author Gene H. Golub
ISBN-10 9780080516691
Release 2014-06-28
Pages 344
Download Link Click Here

Scientific Computing and Differential Equations: An Introduction to Numerical Methods, is an excellent complement to Introduction to Numerical Methods by Ortega and Poole. The book emphasizes the importance of solving differential equations on a computer, which comprises a large part of what has come to be called scientific computing. It reviews modern scientific computing, outlines its applications, and places the subject in a larger context. This book is appropriate for upper undergraduate courses in mathematics, electrical engineering, and computer science; it is also well-suited to serve as a textbook for numerical differential equations courses at the graduate level. An introductory chapter gives an overview of scientific computing, indicating its important role in solving differential equations, and placing the subject in the larger environment Contains an introduction to numerical methods for both ordinary and partial differential equations Concentrates on ordinary differential equations, especially boundary-value problems Contains most of the main topics for a first course in numerical methods, and can serve as a text for this course Uses material for junior/senior level undergraduate courses in math and computer science plus material for numerical differential equations courses for engineering/science students at the graduate level



Computational Partial Differential Equations

Computational Partial Differential Equations Author Hans Petter Langtangen
ISBN-10 354043416X
Release 2003-01-22
Pages 862
Download Link Click Here

This text teaches finite element methods and basic finite difference methods from a computational point of view. It emphasizes developing flexible computer programs using the numerical library Diffpack, which is detailed for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. This edition offers new applications and projects, and all program examples are available on the Internet.



Continuum Theory and Modeling of Thermoelectric Elements

Continuum Theory and Modeling of Thermoelectric Elements Author Christophe Goupil
ISBN-10 9783527687879
Release 2015-12-14
Pages 300
Download Link Click Here

Sound knowledge of the latest research results in the thermodynamics and design of thermoelectric devices, providing a solid foundation for thermoelectric element and module design in the technical development process and thus serving as an indispensable tool for any application development. The text is aimed mainly at the project developer in the field of thermoelectric technology, both in academia and industry, as well as at graduate and advanced undergraduate students. Some core sections address the specialist in the field of thermoelectric energy conversion, providing detailed discussion of key points with regard to optimization. The international team of authors with experience in thermoelectrics research represents such institutes as EnsiCaen Universit? de Paris, JPL, CalTech, and the German Aerospace Center.



Fuzzy Differential Equations and Applications for Engineers and Scientists

Fuzzy Differential Equations and Applications for Engineers and Scientists Author S. Chakraverty
ISBN-10 9781315355535
Release 2016-11-25
Pages 240
Download Link Click Here

Differential equations play a vital role in the modeling of physical and engineering problems, such as those in solid and fluid mechanics, viscoelasticity, biology, physics, and many other areas. In general, the parameters, variables and initial conditions within a model are considered as being defined exactly. In reality there may be only vague, imprecise or incomplete information about the variables and parameters available. This can result from errors in measurement, observation, or experimental data; application of different operating conditions; or maintenance induced errors. To overcome uncertainties or lack of precision, one can use a fuzzy environment in parameters, variables and initial conditions in place of exact (fixed) ones, by turning general differential equations into Fuzzy Differential Equations ("FDEs"). In real applications it can be complicated to obtain exact solution of fuzzy differential equations due to complexities in fuzzy arithmetic, creating the need for use of reliable and efficient numerical techniques in the solution of fuzzy differential equations. These include fuzzy ordinary and partial, fuzzy linear and nonlinear, and fuzzy arbitrary order differential equations. This unique work?provides a new direction for the reader in the use of basic concepts of fuzzy differential equations, solutions and its applications. It can serve as an essential reference work for students, scholars, practitioners, researchers and academicians in engineering and science who need to model uncertain physical problems.



Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica

Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica Author Kuzman Adzievski
ISBN-10 9781466510579
Release 2016-04-19
Pages 648
Download Link Click Here

With a special emphasis on engineering and science applications, this textbook provides a mathematical introduction to PDEs at the undergraduate level. It takes a new approach to PDEs by presenting computation as an integral part of the study of differential equations. The authors use Mathematica® along with graphics to improve understanding and interpretation of concepts. They also present exercises in each chapter and solutions to selected examples. Topics discussed include Laplace and Fourier transforms as well as Sturm-Liouville boundary value problems.



Mathematical and Numerical Methods for Partial Differential Equations

Mathematical and Numerical Methods for Partial Differential Equations Author Joël Chaskalovic
ISBN-10 9783319035635
Release 2014-05-16
Pages 358
Download Link Click Here

This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.



Implementing Spectral Methods for Partial Differential Equations

Implementing Spectral Methods for Partial Differential Equations Author David Kopriva
ISBN-10 9789048122615
Release 2009-05-27
Pages 397
Download Link Click Here

This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.



Nonlinear Partial Differential Equations in Engineering and Applied Science

Nonlinear Partial Differential Equations in Engineering and Applied Science Author Robert L. Sternberg
ISBN-10 9781351428057
Release 2017-10-02
Pages 504
Download Link Click Here

In this volume are twenty-eight papers from the Conference on Nonlinear Partial Differential Equationsin Engineering and Applied Science, sponsored by the Office of Naval Research and held at the Universityof Rhode Island in June, 1979. Included are contributions from an international group of distinguishedmathematicians, scientists, and engineers coming from a wide variety of disciplines and having a commoninterest in the application of mathematics, particularly nonlinear partial differential equations, to realworld problems.The subject matter ranges from almost purely mathematical topics in numerical analysis and bifurcationtheory to a host of practical applications that involve nonlinear partial differential equations, suchas fluid dynamics, nonlinear waves, elasticity, viscoelasticity, hyperelasticity, solitons, metallurgy, shocklessairfoil design, quantum fields, and Darcy's law on flows in porous media.Non/inear Partial Differential Equations in Engineering and Applied Science focuses on a variety oftopics of specialized, contemporary concern to mathematicians, physical and biological scientists, andengineers who work with phenomena that can be described by nonlinear partial differential equations.



Computational Partial Differential Equations Using MATLAB

Computational Partial Differential Equations Using MATLAB Author Jichun Li
ISBN-10 1420089056
Release 2008-10-20
Pages 378
Download Link Click Here

This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical methods, such as the high-order compact difference method and the radial basis function meshless method. Helps Students Better Understand Numerical Methods through Use of MATLAB® The authors uniquely emphasize both theoretical numerical analysis and practical implementation of the algorithms in MATLAB, making the book useful for students in computational science and engineering. They provide students with simple, clear implementations instead of sophisticated usages of MATLAB functions. All the Material Needed for a Numerical Analysis Course Based on the authors’ own courses, the text only requires some knowledge of computer programming, advanced calculus, and difference equations. It includes practical examples, exercises, references, and problems, along with a solutions manual for qualifying instructors. Students can download MATLAB code from www.crcpress.com, enabling them to easily modify or improve the codes to solve their own problems.



Sustainable Natural Resource Management

Sustainable Natural Resource Management Author Daniel R. Lynch
ISBN-10 9780521899727
Release 2009-03-02
Pages 230
Download Link Click Here

Natural resources support all human productivity. The sustainable management of natural resources is among the preeminent problems of the current century. Sustainability and the implied professional responsibility start here. This book uses applied mathematics familiar to undergraduate engineers and scientists to examine natural resource management and its role in framing sustainability. Renewable and nonrenewable resources are covered, along with living and sterile resources. Examples and applications are drawn from petroleum, fisheries, and water resources. Each chapter contains problems illustrating the material. Simple programs in commonly available packages (Excel, MATLAB) support the text. The material is a natural prelude to more advanced study in ecology, conservation, and population dynamics, as well as engineering and science. The mathematical description is kept within what an undergraduate student in the sciences or engineering would normally be expected to master for natural systems. The purpose is to allow students to confront natural resource problems early in their preparation.



Numerical Treatment of Partial Differential Equations

Numerical Treatment of Partial Differential Equations Author Christian Grossmann
ISBN-10 9783540715849
Release 2007-08-11
Pages 596
Download Link Click Here

This book deals with discretization techniques for partial differential equations of elliptic, parabolic and hyperbolic type. It provides an introduction to the main principles of discretization and gives a presentation of the ideas and analysis of advanced numerical methods in the area. The book is mainly dedicated to finite element methods, but it also discusses difference methods and finite volume techniques. Coverage offers analytical tools, properties of discretization techniques and hints to algorithmic aspects. It also guides readers to current developments in research.



Particles in the Coastal Ocean

Particles in the Coastal Ocean Author Daniel R. Lynch
ISBN-10 9781316062517
Release 2014-12-22
Pages
Download Link Click Here

The coastal ocean comprises the semi-enclosed seas on the continental shelf, including estuaries and extending to the shelf break. This region is the focus of many serious concerns, including coastal inundation by tides, storm surges or sea level change; fisheries and aquaculture management; water quality; harmful algal blooms; planning of facilities (such as power stations); port development and maintenance; and oil spills. This book addresses modeling and simulation of the transport, evolution and fate of particles (physical and biological) in the coastal ocean. It is the first to summarize the state of the art in this field and direct it toward diverse applications, for example in measuring and monitoring sediment motion, oil spills and larval ecology. This is an invaluable textbook and reference work for advanced students and researchers in oceanography, geophysical fluid dynamics, marine and civil engineering, computational science and environmental science.



Handbook of Linear Partial Differential Equations for Engineers and Scientists Second Edition

Handbook of Linear Partial Differential Equations for Engineers and Scientists  Second Edition Author Andrei D. Polyanin
ISBN-10 9781466581494
Release 2015-12-23
Pages 1609
Download Link Click Here

Includes nearly 4,000 linear partial differential equations (PDEs) with solutions Presents solutions of numerous problems relevant to heat and mass transfer, wave theory, hydrodynamics, aerodynamics, elasticity, acoustics, electrodynamics, diffraction theory, quantum mechanics, chemical engineering sciences, electrical engineering, and other fields Outlines basic methods for solving various problems in science and engineering Contains much more linear equations, problems, and solutions than any other book currently available Provides a database of test problems for numerical and approximate analytical methods for solving linear PDEs and systems of coupled PDEs New to the Second Edition More than 700 pages with 1,500+ new first-, second-, third-, fourth-, and higher-order linear equations with solutions Systems of coupled PDEs with solutions Some analytical methods, including decomposition methods and their applications Symbolic and numerical methods for solving linear PDEs with Maple, Mathematica, and MATLAB® Many new problems, illustrative examples, tables, and figures To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity.