Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Numerical Solution of Partial Differential Equations Theory Tools and Case Studies

Numerical Solution of Partial Differential Equations  Theory  Tools and Case Studies Author Dr. D. P. Laurie
ISBN-10 9783034862622
Release 2013-11-21
Pages 341
Download Link Click Here

Numerical Solution of Partial Differential Equations Theory Tools and Case Studies has been writing in one form or another for most of life. You can find so many inspiration from Numerical Solution of Partial Differential Equations Theory Tools and Case Studies also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Numerical Solution of Partial Differential Equations Theory Tools and Case Studies book for free.



Numerical Methods in Software and Analysis

Numerical Methods in Software and Analysis Author John R. Rice
ISBN-10 9781483295688
Release 2014-05-19
Pages 720
Download Link Click Here

Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithms. The book is organized into three parts. Part I presents the background material. Part II presents the principal methods and ideas of numerical computation. Part III contains material about software engineering and performance evaluation. A uniform approach is used in each area of numerical computation. First, an intuitive development is made of the problems and the basic methods for their solution. Then, relevant mathematical software is reviewed and its use outlined. Many areas provide extensive examples and case studies. Finally, a deeper analysis of the methods is presented as in traditional numerical analysis texts. Emphasizes the use of high-quality mathematical software for numerical computation Extensive use of IMSL routines Features extensive examples and case studies



Finite Elements

Finite Elements Author Dietrich Braess
ISBN-10 0521011957
Release 2001-04-12
Pages 352
Download Link Click Here

This is a thoroughly revised version of the successful first edition. In addition to up-dating the existing text, the author has added new material that will prove useful for research or application of the finite element method. The most important application of finite elements is the numerical solution of elliptic partial differential equations. The author gives a thorough coverage of this subject and includes aspects such as saddle point problems which require a more in-depth mathematical treatment. This is a book for graduate students who do not necessarily have any particular background in differential equations, but require an introduction to finite element methods. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.



Shallow Water Hydrodynamics

Shallow Water Hydrodynamics Author W.Y. Tan
ISBN-10 0080870937
Release 1992-08-17
Pages 433
Download Link Click Here

Within this monograph a comprehensive and systematic knowledge on shallow-water hydrodynamics is presented. A two-dimensional system of shallow-water equations is analyzed, including the mathematical and mechanical backgrounds, the properties of the system and its solution. Also featured is a new mathematical simulation of shallow-water flows by compressible plane flows of a special virtual perfect gas, as well as practical algorithms such as FDM, FEM, and FVM. Some of these algorithms have been utilized in solving the system, while others have been utilized in various applied fields. An emphasis has been placed on several classes of high-performance difference schemes and boundary procedures which have found wide uses recently for solving the Euler equations of gas dynamics in aeronautical and aerospatial engineering. This book is constructed so that it may serve as a handbook for practicians. It will be of interest to scientists, designers, teachers, postgraduates and professionals in hydraulic, marine, and environmental engineering; especially those involved in the mathematical modelling of shallow-water bodies.



Computational Partial Differential Equations

Computational Partial Differential Equations Author Hans Petter Langtangen
ISBN-10 9783662011706
Release 2013-04-17
Pages 685
Download Link Click Here

Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.



Index of Mathematical Papers

Index of Mathematical Papers Author
ISBN-10 UOM:39015053357821
Release 1985
Pages
Download Link Click Here

Index of Mathematical Papers has been writing in one form or another for most of life. You can find so many inspiration from Index of Mathematical Papers also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Index of Mathematical Papers book for free.



Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods Author Stig Larsson
ISBN-10 9783540887058
Release 2008-12-05
Pages 262
Download Link Click Here

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.



Techniques of Functional Analysis for Differential and Integral Equations

Techniques of Functional Analysis for Differential and Integral Equations Author Paul Sacks
ISBN-10 9780128114575
Release 2017-05-16
Pages 320
Download Link Click Here

Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations, and especially partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and as PhD research preparation in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs are limited, and their sources precisely identifie d, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. Provides an introduction to the mathematical techniques widely used in applied mathematics and needed for advanced research Establishes the advanced background needed for sophisticated literature review and research in both differential and integral equations Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics



Mathematical Reviews

Mathematical Reviews Author
ISBN-10 UVA:X001409687
Release 1985
Pages
Download Link Click Here

Mathematical Reviews has been writing in one form or another for most of life. You can find so many inspiration from Mathematical Reviews also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Mathematical Reviews book for free.



Current Engineering Practice

Current Engineering Practice Author
ISBN-10 UIUC:30112007802165
Release 1985
Pages
Download Link Click Here

Current Engineering Practice has been writing in one form or another for most of life. You can find so many inspiration from Current Engineering Practice also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Current Engineering Practice book for free.



Computational Partial Differential Equations

Computational Partial Differential Equations Author Hans Petter Langtangen
ISBN-10 9783642557699
Release 2012-12-06
Pages 862
Download Link Click Here

This text teaches finite element methods and basic finite difference methods from a computational point of view. It emphasizes developing flexible computer programs using the numerical library Diffpack, which is detailed for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. This edition offers new applications and projects, and all program examples are available on the Internet.



Scientific Computing with Case Studies

Scientific Computing with Case Studies Author Dianne P. O'Leary
ISBN-10 9780898716665
Release 2009-03-19
Pages 383
Download Link Click Here

This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.



Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations Author G. Evans
ISBN-10 9781447103776
Release 2012-12-06
Pages 290
Download Link Click Here

The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. James Clerk Maxwell, for example, put electricity and magnetism into a unified theory by establishing Maxwell's equations for electromagnetic theory, which gave solutions for prob lems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechanical processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forecasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.



Mathematical Tools for Physicists

Mathematical Tools for Physicists Author Michael Grinfeld
ISBN-10 9783527684274
Release 2014-11-05
Pages 632
Download Link Click Here

The new edition is significantly updated and expanded. This unique collection of review articles, ranging from fundamental concepts up to latest applications, contains individual contributions written by renowned experts in the relevant fields. Much attention is paid to ensuring fast access to the information, with each carefully reviewed article featuring cross-referencing, references to the most relevant publications in the field, and suggestions for further reading, both introductory as well as more specialized. While the chapters on group theory, integral transforms, Monte Carlo methods, numerical analysis, perturbation theory, and special functions are thoroughly rewritten, completely new content includes sections on commutative algebra, computational algebraic topology, differential geometry, dynamical systems, functional analysis, graph and network theory, PDEs of mathematical physics, probability theory, stochastic differential equations, and variational methods.



Control Theory of Systems Governed by Partial Differential Equations

Control Theory of Systems Governed by Partial Differential Equations Author A.K. Aziz
ISBN-10 9781483216300
Release 2014-05-10
Pages 288
Download Link Click Here

Control Theory of Systems Governed by Partial Differential Equations covers the proceedings of the 1976 Conference by the same title, held at the Naval Surface Weapons Center, Silver Spring, Maryland. The purpose of this conference is to examine the control theory of partial differential equations and its application. This text is divided into five chapters that primarily focus on tutorial lecture series on the theory of optimal control of distributed systems. It describes the many manifestations of the theory and its applications appearing in the other chapters. This work also presents the principles of the duality and asymptotic methods in control theory, including the variational principle for the heat equation. A chapter highlights systems that are not of the linear quadratic type. This chapter also explores the control of free surfaces and the geometrical control variables. The last chapter provides a summary of the features and applications of the numerical approximation of problems of optimal control. This book will prove useful to mathematicians, engineers, and researchers.



Mathematical Modelling with Case Studies

Mathematical Modelling with Case Studies Author B. Barnes
ISBN-10 9781482247756
Release 2014-12-15
Pages 388
Download Link Click Here

Mathematical Modelling with Case Studies: Using MapleTM and MATLAB®, Third Edition provides students with hands-on modelling skills for a wide variety of problems involving differential equations that describe rates of change. While the book focuses on growth and decay processes, interacting populations, and heating/cooling problems, the mathematical techniques presented can be applied to many other areas. The text carefully details the process of constructing a model, including the conversion of a seemingly complex problem into a much simpler one. It uses flow diagrams and word equations to aid in the model-building process and to develop the mathematical equations. Employing theoretical, graphical, and computational tools, the authors analyze the behavior of the models under changing conditions. The authors often examine a model numerically before solving it analytically. They also discuss the validation of the models and suggest extensions to the models with an emphasis on recognizing the strengths and limitations of each model. The highly recommended second edition was praised for its lucid writing style and numerous real-world examples. With updated MapleTM and MATLAB® code as well as new case studies and exercises, this third edition continues to give students a clear, practical understanding of the development and interpretation of mathematical models.



Process Modelling and Simulation with Finite Element Methods

Process Modelling and Simulation with Finite Element Methods Author William B. J. Zimmerman
ISBN-10 9812387935
Release 2004
Pages 382
Download Link Click Here

This book presents a systematic description and case studies of chemical engineering modelling and simulation based on the MATLAB/FEMLAB tools, in support of selected topics in undergraduate and postgraduate programmes that require numerical solution of complex balance equations (ordinary differential equations, partial differential equations, nonlinear equations, integro-differential equations). These systems arise naturally in analysis of transport phenomena, process systems, chemical reactions and chemical thermodynamics, and particle rate processes. Templates are given for modelling both state-of-the-art research topics (e.g. microfluidic networks, film drying, multiphase flow, population balance equations) and case studies of commonplace design calculations -- mixed phase reactor design, heat transfer, flowsheet analysis of unit operations, flash distillations, etc. The great strength of this book is that it makes modelling and simulating in the MATLAB/FEMLAB environment approachable to both the novice and the expert modeller.