Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

 Choose the Correct Solution Method for Your Optimization Problem Optimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden–Fletcher–Goldfarb–Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible directions, genetic algorithms, particle swarm optimization (PSO), simulated annealing, ant colony optimization, and tabu search methods. The author shows how to solve non-convex multi-objective optimization problems using simple modifications of the basic PSO code. The book also introduces multidisciplinary design optimization (MDO) architectures—one of the first optimization books to do so—and develops software codes for the simplex method and affine-scaling interior point method for solving linear programming problems. In addition, it examines Gomory’s cutting plane method, the branch-and-bound method, and Balas’ algorithm for integer programming problems. The author follows a step-by-step approach to developing the MATLAB® codes from the algorithms. He then applies the codes to solve both standard functions taken from the literature and real-world applications, including a complex trajectory design problem of a robot, a portfolio optimization problem, and a multi-objective shape optimization problem of a reentry body. This hands-on approach improves your understanding and confidence in handling different solution methods. The MATLAB codes are available on the book’s CRC Press web page.

 Researchers working with nonlinear programming often claim "the word is non linear" indicating that real applications require nonlinear modeling. The same is true for other areas such as multi-objective programming (there are always several goals in a real application), stochastic programming (all data is uncer tain and therefore stochastic models should be used), and so forth. In this spirit we claim: The word is multilevel. In many decision processes there is a hierarchy of decision makers, and decisions are made at different levels in this hierarchy. One way to handle such hierar chies is to focus on one level and include other levels' behaviors as assumptions. Multilevel programming is the research area that focuses on the whole hierar chy structure. In terms of modeling, the constraint domain associated with a multilevel programming problem is implicitly determined by a series of opti mization problems which must be solved in a predetermined sequence. If only two levels are considered, we have one leader (associated with the upper level) and one follower (associated with the lower level).

 Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.

 The use of optimization techniques has become integral to the design and analysis of most industrial and socio-economic systems. Great strides have been made recently in the solution of large-scale problems arising in such areas as production planning, airline scheduling, government regulation, and engineering design, to name a few. Analysts have found, however, that standard mathematical programming models are often inadequate in these situations because more than a single objective function and a single decision maker are involved. Multiple objective programming deals with the extension of optimization techniques to account for several objective functions, while game theory deals with the inter-personal dynamics surrounding conflict. Bilevel programming, the focus of this book, is in a narrow sense the combination of the two. It addresses the problern in which two decision makers, each with their individual objectives, act and react in a noncooperative, sequential manner. The actions of one affect the choices and payoffs available to the other but neither player can completely dominate the other in the traditional sense.

 Modern optimization approaches have attracted many research scientists, decision makers and practicing researchers in recent years as powerful intelligent computational techniques for solving several complex real-world problems. The Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics highlights the latest research innovations and applications of algorithms designed for optimization applications within the fields of engineering, IT, and economics. Focusing on a variety of methods and systems as well as practical examples, this book is a significant resource for graduate-level students, decision makers, and researchers in both public and private sectors who are seeking research-based methods for modeling uncertain real-world problems. .

 Global optimization is concerned with the characterization and computation of global minima or maxima of nonlinear functions. Such problems are widespread in mathematical modeling of real world systems for a very broad range of applications. The applications include economies of scale, fixed charges, allocation and location problems, quadratic assignment and a number of other combinatorial optimization problems. More recently it has been shown that certain aspects of VLSI chip design and database problems can be formulated as constrained global optimization problems with a quadratic objective function. Although standard nonlinear programming algorithms will usually obtain a local minimum to the problem , such a local minimum will only be global when certain conditions are satisfied (such as f and K being convex).

 Practical Optimization: Algorithms and Engineering Applications is a hands-on treatment of the subject of optimization. A comprehensive set of problems and exercises makes the book suitable for use in one or two semesters of a first-year graduate course or an advanced undergraduate course. Each half of the book contains a full semester’s worth of complementary yet stand-alone material. The practical orientation of the topics chosen and a wealth of useful examples also make the book suitable for practitioners in the field.

 This volume contains a thorough overview of the rapidly growing field of global optimization, with chapters on key topics such as complexity, heuristic methods, derivation of lower bounds for minimization problems, and branch-and-bound methods and convergence. The final chapter offers both benchmark test problems and applications of global optimization, such as finding the conformation of a molecule or planning an optimal trajectory for interplanetary space travel. An appendix provides fundamental information on convex and concave functions. Intended for Ph.D. students, researchers, and practitioners looking for advanced solution methods to difficult optimization problems. It can be used as a supplementary text in an advanced graduate-level seminar.

 This advanced text introduces parallel computing ideas into optimization theory and numerical algorithms for large-scale optimization problems. It combines rigorous mathematical analysis of algorithms with real-world applications.

 Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques lays the foundation for the successful integration of evolutionary computation into software engineering. It surveys techniques ranging from genetic algorithms, to swarm optimization theory, to ant colony optimization, demonstrating their uses and capabilities. These techniques are applied to aspects of software engineering such as software testing, quality assessment, reliability assessment, and fault prediction models, among others, to providing researchers, scholars and students with the knowledge needed to expand this burgeoning application.

 The book presents recently developed efficient metaheuristic optimization algorithms and their applications for solving various optimization problems in civil engineering. The concepts can also be used for optimizing problems in mechanical and electrical engineering.

 Modern optimization approaches have attracted an increasing number of scientists, decision makers, and researchers. As new issues in this field emerge, different optimization methodologies must be developed and implemented. The Handbook of Research on Emergent Applications of Optimization Algorithms is an authoritative reference source for the latest scholarly research on modern optimization techniques for solving complex problems of global optimization and their applications in economics and engineering. Featuring coverage on a broad range of topics and perspectives such as hybrid systems, non-cooperative games, and cryptography, this publication is ideally designed for students, researchers, and engineers interested in emerging developments in optimization algorithms.

 Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature Provides a theoretical understanding as well as practical implementation hints Provides a step-by-step introduction to each algorithm

 This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.