Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Ordered Sets

Ordered Sets Author Bernd Schröder
ISBN-10 9783319297880
Release 2016-05-11
Pages 420
Download Link Click Here

An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.



Ordered Sets

Ordered Sets Author Bernd Schroeder
ISBN-10 9781461200536
Release 2012-12-06
Pages 391
Download Link Click Here

An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.



Lattices and Ordered Sets

Lattices and Ordered Sets Author Steven Roman
ISBN-10 0387789014
Release 2008-12-15
Pages 305
Download Link Click Here

This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.



Introduction to Lattices and Order

Introduction to Lattices and Order Author B. A. Davey
ISBN-10 0521784514
Release 2002-04-18
Pages 298
Download Link Click Here

This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.



A Combinatorial Introduction to Topology

A Combinatorial Introduction to Topology Author Michael Henle
ISBN-10 0486679667
Release 1979
Pages 310
Download Link Click Here

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.



A Course in Topological Combinatorics

A Course in Topological Combinatorics Author Mark de Longueville
ISBN-10 9781441979100
Release 2012-09-18
Pages 240
Download Link Click Here

A Course in Topological Combinatorics is the first undergraduate textbook on the field of topological combinatorics, a subject that has become an active and innovative research area in mathematics over the last thirty years with growing applications in math, computer science, and other applied areas. Topological combinatorics is concerned with solutions to combinatorial problems by applying topological tools. In most cases these solutions are very elegant and the connection between combinatorics and topology often arises as an unexpected surprise. The textbook covers topics such as fair division, graph coloring problems, evasiveness of graph properties, and embedding problems from discrete geometry. The text contains a large number of figures that support the understanding of concepts and proofs. In many cases several alternative proofs for the same result are given, and each chapter ends with a series of exercises. The extensive appendix makes the book completely self-contained. The textbook is well suited for advanced undergraduate or beginning graduate mathematics students. Previous knowledge in topology or graph theory is helpful but not necessary. The text may be used as a basis for a one- or two-semester course as well as a supplementary text for a topology or combinatorics class.



Classical Topology and Combinatorial Group Theory

Classical Topology and Combinatorial Group Theory Author
ISBN-10 9781468401103
Release 2012-12-06
Pages 301
Download Link Click Here

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does not understand the simplest topological facts, such as the reason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical develop ment where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recrea. ions like the seven bridges; rather, it resulted from the visualization of problems from other parts of mathematics complex analysis (Riemann), mechanics (poincare), and group theory (Oehn). It is these connections to other parts of mathematics which make topology an important as well as a beautiful subject.



Introduction to Ramsey Spaces AM 174

Introduction to Ramsey Spaces  AM 174 Author Stevo Todorcevic
ISBN-10 1400835402
Release 2010-07-01
Pages 296
Download Link Click Here

Ramsey theory is a fast-growing area of combinatorics with deep connections to other fields of mathematics such as topological dynamics, ergodic theory, mathematical logic, and algebra. The area of Ramsey theory dealing with Ramsey-type phenomena in higher dimensions is particularly useful. Introduction to Ramsey Spaces presents in a systematic way a method for building higher-dimensional Ramsey spaces from basic one-dimensional principles. It is the first book-length treatment of this area of Ramsey theory, and emphasizes applications for related and surrounding fields of mathematics, such as set theory, combinatorics, real and functional analysis, and topology. In order to facilitate accessibility, the book gives the method in its axiomatic form with examples that cover many important parts of Ramsey theory both finite and infinite. An exciting new direction for combinatorics, this book will interest graduate students and researchers working in mathematical subdisciplines requiring the mastery and practice of high-dimensional Ramsey theory.



Combinatorial Algebraic Topology

Combinatorial Algebraic Topology Author Dimitry Kozlov
ISBN-10 9783540719625
Release 2007-12-29
Pages 390
Download Link Click Here

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.



Ordered Sets

Ordered Sets Author Egbert Harzheim
ISBN-10 9780387242224
Release 2006-03-30
Pages 386
Download Link Click Here

This detailed textbook presents a great deal of material on ordered sets not previously published in the still rather limited textbook literature. It should be suitable as a text for a course on order theory.



Distributed Computing Through Combinatorial Topology

Distributed Computing Through Combinatorial Topology Author Maurice Herlihy
ISBN-10 9780124047280
Release 2013-11-30
Pages 336
Download Link Click Here

Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises



Handbook of Set Theoretic Topology

Handbook of Set Theoretic Topology Author K. Kunen
ISBN-10 9781483295152
Release 2014-06-28
Pages 1282
Download Link Click Here

This Handbook is an introduction to set-theoretic topology for students in the field and for researchers in other areas for whom results in set-theoretic topology may be relevant. The aim of the editors has been to make it as self-contained as possible without repeating material which can easily be found in standard texts. The Handbook contains detailed proofs of core results, and references to the literature for peripheral results where space was insufficient. Included are many open problems of current interest. In general, the articles may be read in any order. In a few cases they occur in pairs, with the first one giving an elementary treatment of a subject and the second one more advanced results. These pairs are: Hodel and Juhász on cardinal functions; Roitman and Abraham-Todorčević on S- and L-spaces; Weiss and Baumgartner on versions of Martin's axiom; and Vaughan and Stephenson on compactness properties.



Combinatorial Topology

Combinatorial Topology Author Pavel S. Aleksandrov
ISBN-10 0486401790
Release 1956
Pages 148
Download Link Click Here

Clearly written, well-organized, 3-part text begins by dealing with certain classic problems without using the formal techniques of homology theory and advances to the central concept, the Betti groups. Numerous detailed examples.



An Introduction to Algebraic Topology

An Introduction to Algebraic Topology Author Andrew H. Wallace
ISBN-10 9780486152950
Release 2011-11-30
Pages 208
Download Link Click Here

This self-contained treatment begins with three chapters on the basics of point-set topology, after which it proceeds to homology groups and continuous mapping, barycentric subdivision, and simplicial complexes. 1961 edition.



Encyclopedia of General Topology

Encyclopedia of General Topology Author K.P. Hart
ISBN-10 0080530869
Release 2003-11-18
Pages 536
Download Link Click Here

This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book. Key features: • More terms from General Topology than any other book ever published • Short and informative articles • Authors include the majority of top researchers in the field • Extensive indexing of terms



Mathematical Tools for Data Mining

Mathematical Tools for Data Mining Author Dan Simovici
ISBN-10 9781447164074
Release 2014-03-27
Pages 831
Download Link Click Here

Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book. Topics include partially ordered sets, combinatorics, general topology, metric spaces, linear spaces, graph theory. To motivate the reader a significant number of applications of these mathematical tools are included ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc. The book is intended as a reference for researchers and graduate students. The current edition is a significant expansion of the first edition. We strived to make the book self-contained and only a general knowledge of mathematics is required. More than 700 exercises are included and they form an integral part of the material. Many exercises are in reality supplemental material and their solutions are included.



Set Theory

Set Theory Author Ralf Schindler
ISBN-10 9783319067254
Release 2014-05-22
Pages 332
Download Link Click Here

This textbook gives an introduction to axiomatic set theory and examines the prominent questions that are relevant in current research in a manner that is accessible to students. Its main theme is the interplay of large cardinals, inner models, forcing and descriptive set theory. The following topics are covered: • Forcing and constructability • The Solovay-Shelah Theorem i.e. the equiconsistency of ‘every set of reals is Lebesgue measurable’ with one inaccessible cardinal • Fine structure theory and a modern approach to sharps • Jensen’s Covering Lemma • The equivalence of analytic determinacy with sharps • The theory of extenders and iteration trees • A proof of projective determinacy from Woodin cardinals. Set Theory requires only a basic knowledge of mathematical logic and will be suitable for advanced students and researchers.