Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Ordinary and Partial Differential Equations for the Beginner

Ordinary and Partial Differential Equations for the Beginner Author László Székelyhidi
ISBN-10 9789814725019
Release 2016-05-24
Pages 256
Download Link Click Here

This textbook is intended for college, undergraduate and graduate students, emphasizing mainly on ordinary differential equations. However, the theory of characteristics for first order partial differential equations and the classification of second order linear partial differential operators are also included. It contains the basic material starting from elementary solution methods for ordinary differential equations to advanced methods for first order partial differential equations. In addition to the theoretical background, solution methods are strongly emphasized. Each section is completed with problems and exercises, and the solutions are also provided. There are special sections devoted to more applied tools such as implicit equations, Laplace transform, Fourier method, etc. As a novelty, a method for finding exponential polynomial solutions is presented which is based on the author's work in spectral synthesis. The presentation is self-contained, provided the reader has general undergraduate knowledge.



Ordinary and Partial Differential Equations

Ordinary and Partial Differential Equations Author Ravi P. Agarwal
ISBN-10 9780387791463
Release 2008-11-13
Pages 410
Download Link Click Here

In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.



Ordinary and Partial Differential Equations

Ordinary and Partial Differential Equations Author Victor Henner
ISBN-10 9781466515000
Release 2013-01-29
Pages 644
Download Link Click Here

Covers ODEs and PDEs—in One Textbook Until now, a comprehensive textbook covering both ordinary differential equations (ODEs) and partial differential equations (PDEs) didn’t exist. Fulfilling this need, Ordinary and Partial Differential Equations provides a complete and accessible course on ODEs and PDEs using many examples and exercises as well as intuitive, easy-to-use software. Teaches the Key Topics in Differential Equations The text includes all the topics that form the core of a modern undergraduate or beginning graduate course in differential equations. It also discusses other optional but important topics such as integral equations, Fourier series, and special functions. Numerous carefully chosen examples offer practical guidance on the concepts and techniques. Guides Students through the Problem-Solving Process Requiring no user programming, the accompanying computer software allows students to fully investigate problems, thus enabling a deeper study into the role of boundary and initial conditions, the dependence of the solution on the parameters, the accuracy of the solution, the speed of a series convergence, and related questions. The ODE module compares students’ analytical solutions to the results of computations while the PDE module demonstrates the sequence of all necessary analytical solution steps.



Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations Author Randall J. LeVeque
ISBN-10 0898717833
Release 2007
Pages 339
Download Link Click Here

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.



Applications of Lie s Theory of Ordinary and Partial Differential Equations

Applications of Lie s Theory of Ordinary and Partial Differential Equations Author L Dresner
ISBN-10 1420050788
Release 1998-01-01
Pages 225
Download Link Click Here

Lie's group theory of differential equations unifies the many ad hoc methods known for solving differential equations and provides powerful new ways to find solutions. The theory has applications to both ordinary and partial differential equations and is not restricted to linear equations. Applications of Lie's Theory of Ordinary and Partial Differential Equations provides a concise, simple introduction to the application of Lie's theory to the solution of differential equations. The author emphasizes clarity and immediacy of understanding rather than encyclopedic completeness, rigor, and generality. This enables readers to quickly grasp the essentials and start applying the methods to find solutions. The book includes worked examples and problems from a wide range of scientific and engineering fields.



The Numerical Solution of Ordinary and Partial Differential Equations

The Numerical Solution of Ordinary and Partial Differential Equations Author Granville Sewell
ISBN-10 9789814635110
Release 2014-12-16
Pages 348
Download Link Click Here

This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland



A course in ordinary and partial differential equations

A course in ordinary and partial differential equations Author Zalman Rubinstein
ISBN-10 UOM:39015049318101
Release 1969
Pages 477
Download Link Click Here

A course in ordinary and partial differential equations has been writing in one form or another for most of life. You can find so many inspiration from A course in ordinary and partial differential equations also informative, and entertaining. Click DOWNLOAD or Read Online button to get full A course in ordinary and partial differential equations book for free.



Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB

Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB Author Alexander Stanoyevitch
ISBN-10 9781118031506
Release 2011-10-14
Pages 832
Download Link Click Here

Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB has been writing in one form or another for most of life. You can find so many inspiration from Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB book for free.



ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS Author NITA H. SHAH
ISBN-10 9788120350878
Release 2015-01-17
Pages 528
Download Link Click Here

This revised and updated text, now in its second edition, continues to present the theoretical concepts of methods of solutions of ordinary and partial differential equations. It equips students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of ordinary and partial differential equations. It contains different methods of solving ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The text elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel’s and Legendre’s equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics. New to the SECOND Edition • Includes new sections and subsections such as applications of differential equations, special substitution (Lagrange and Riccati), solutions of non-linear equations which are exact, method of variation of parameters for linear equations of order higher than two, and method of undetermined coefficients • Incorporates several worked-out examples and exercises with their answers • Contains a new Chapter 19 on ‘Z-Transforms and its Applications’.



Numerical Solution of Ordinary and Partial Differential Equations

Numerical Solution of Ordinary and Partial Differential Equations Author L. Fox
ISBN-10 9781483149479
Release 2014-05-15
Pages 520
Download Link Click Here

Numerical Solution of Ordinary and Partial Differential Equations is based on a summer school held in Oxford in August-September 1961. The book is organized into four parts. The first three cover the numerical solution of ordinary differential equations, integral equations, and partial differential equations of quasi-linear form. Most of the techniques are evaluated from the standpoints of accuracy, convergence, and stability (in the various senses of these terms) as well as ease of coding and convenience of machine computation. The last part, on practical problems, uses and develops the techniques for the treatment of problems of the greatest difficulty and complexity, which tax not only the best machines but also the best brains. This book was written for scientists who have problems to solve, and who want to know what methods exist, why and in what circumstances some are better than others, and how to adapt and develop techniques for new problems. The budding numerical analyst should also benefit from this book, and should find some topics for valuable research. The first three parts, in fact, could be used not only by practical men but also by students, though a preliminary elementary course would assist the reading.



Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Author Peter J. Olver
ISBN-10 9783319020990
Release 2013-11-08
Pages 636
Download Link Click Here

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.



Differential Operator Equations

Differential Operator Equations Author Yakov Yakubov
ISBN-10 1584881399
Release 1999-11-24
Pages 576
Download Link Click Here

The theory of differential-operator equations is one of two modern theories for the study of both ordinary and partial differential equations, with numerous applications in mechanics and theoretical physics. Although a number of published works address differential-operator equations of the first and second orders, to date none offer a treatment of the higher orders. In Differential-Operator Equations, the authors present a systematic treatment of the theory of differential-operator equations of higher order, with applications to partial differential equations. They construct a theory that allows application to both regular and irregular differential problems. In particular, they study problems that cannot be solved by various known methods and irregular problems not addressed in existing monographs. These include Birkhoff-irregularity, non-local boundary value conditions, and non-smoothness of the boundary of the domains. Among this volume's other points of interest are: The Abel basis property of a system of root functions Irregular boundary value problems The theory of hyperbolic equations in Gevrey space The theory of boundary value problems for elliptic differential equations with a parameter



From Ordinary to Partial Differential Equations

From Ordinary to Partial Differential Equations Author Giampiero Esposito
ISBN-10 9783319575445
Release 2017-07-06
Pages 432
Download Link Click Here

This book is addressed to mathematics and physics students who want to develop an interdisciplinary view of mathematics, from the age of Riemann, Poincaré and Darboux to basic tools of modern mathematics. It enables them to acquire the sensibility necessary for the formulation and solution of difficult problems, with an emphasis on concepts, rigour and creativity. It consists of eight self-contained parts: ordinary differential equations; linear elliptic equations; calculus of variations; linear and non-linear hyperbolic equations; parabolic equations; Fuchsian functions and non-linear equations; the functional equations of number theory; pseudo-differential operators and pseudo-differential equations. The author leads readers through the original papers and introduces new concepts, with a selection of topics and examples that are of high pedagogical value.



Beginning Partial Differential Equations

Beginning Partial Differential Equations Author Peter V. O'Neil
ISBN-10 0471238872
Release 1999
Pages 500
Download Link Click Here

An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.



Ordinary and Partial Differential Equations

Ordinary and Partial Differential Equations Author M.D.Raisinghania
ISBN-10 9789385676161
Release
Pages
Download Link Click Here

This book has been designed for Undergraduate (Honours) and Postgraduate students of various Indian Universities.A set of objective problems has been provided at the end of each chapter which will be useful to the aspirants of competitve examinations



Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations Author James R. Kirkwood
ISBN-10 9780123869111
Release 2013
Pages 418
Download Link Click Here

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.



Ordinary and Partial Differential Equations

Ordinary and Partial Differential Equations Author P Smith
ISBN-10 0582305896
Release 1997-07-16
Pages 160
Download Link Click Here

These conference proceedings include papers by a number of experts with a common interest in differential equations and their application in physical and biological systems. Topics covered include direct and inverse electromagnetic scattering techniques, spatial epidemic models, wound healing, chemotaxis and reaction-diffusion equations, dynamics and stability of thin liquid films, and a contemporary formulation of symmetric linear differential equations.