Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Organic Light Emitting Materials and Devices Second Edition

Organic Light Emitting Materials and Devices  Second Edition Author Zhigang Rick Li
ISBN-10 9781439882801
Release 2015-06-24
Pages 813
Download Link Click Here

Organic Light-Emitting Materials and Devices provides a single source of information covering all aspects of OLEDs, including the systematic investigation of organic light-emitting materials, device physics and engineering, and manufacturing and performance measurement techniques. This Second Edition is a compilation of the advances made in recent years and of the challenges facing the future development of OLED technology. Featuring chapters authored by internationally recognized academic and industrial experts, this authoritative text: Introduces the history, fundamental physics, and potential applications of OLEDs Reviews the synthesis, properties, and device performance of electroluminescent materials used in OLEDs Reflects the current state of molecular design, exemplifying more than 600 light-emitting polymers and highlighting the most efficient materials and devices Explores small molecules-based OLEDs, detailing hole- and electron-injection and electron-transport materials, electron- and hole-blocking materials, sensitizers, and fluorescent and phosphorescent light-emitting materials Describes solution-processable phosphorescent polymer LEDs, energy transfer processes, polarized OLEDs, anode materials, and vapor deposition manufacturing techniques employed in OLED fabrication Discusses flexible display, the backplane circuit technology for organic light-emitting displays, and the latest microstructural characterization and performance measurement techniques Contains abundant diagrams, device configurations, and molecular structures clearly illutrating the presented ideas Organic Light-Emitting Materials and Devices, Second Edition offers a comprehensive overview of the OLED field and can serve as a primary reference for those needing additional information in any particular subarea of organic electroluminescence. This book should attract the attention of materials scientists, synthetic chemists, solid-state physicists, and electronic device engineers, as well as industrial managers and patent lawyers engaged in OLED-related business areas.



Organic Light Emitting Diodes OLEDs

Organic Light Emitting Diodes  OLEDs Author Alastair Buckley
ISBN-10 9780857098948
Release 2013-08-31
Pages 666
Download Link Click Here

Organic light-emitting diodes (OLEDs) are opening up exciting new applications in the area of lighting and displays. OLEDs are self emissive and by careful materials and device design can generate colours across the visible spectrum. Together with simple monolithic fabrication on a range of different substrates, these diverse material properties give OLEDs key advantages over existing display and lighting technology. This important book summarises key research on materials, engineering and the range of applications of these versatile materials. Part one covers materials for OLEDs. Chapters review conjugated polymers, transparent conducting thin films, iridium complexes and phosphorescent materials. Part two discusses the operation and engineering of OLED devices. Chapters discuss topics such as highly efficient pin-type OLEDs, amorphous organic semiconductors, nanostructuring techniques, light extraction, colour tuning, printing techniques, fluorenone defects and disruptive characteristics as well as durability issues. Part three explores the applications of OLEDs in displays and solid-state lighting. Applications discussed include displays, microdisplays and transparent OLEDs, sensors and large-area OLED lighting panels. Organic light-emitting diodes (OLEDs) is a standard reference for engineers working in lighting, display technology and the consumer electronics sectors, as well as those researching OLEDs. Summarises key research on the materials, engineering and applications of OLEDs Reviews conjugated polymers, transparent conducting thin films Considers nanostructuring OLEDS for increasing levels of efficiency



Organic Electroluminescence

Organic Electroluminescence Author Zakya H. Kafafi
ISBN-10 1420028200
Release 2005-05-20
Pages 528
Download Link Click Here

Organic light-emitting diode(OLED) technology has achieved significant penetration in the commercial market for small, low-voltage and inexpensive displays. Present and future novel technologies based on OLEDs involve rigid and flexible flat panel displays, solid-state lighting, and lasers. Display applications may range from hand-held devices to large flat panel screens that can be rolled up or hung flat on a wall or a ceiling. Organic Electroluminescence gives an overview of the on-going research in the field of organic light-emitting materials and devices, covering the principles of electroluminescence in organic thin films, as well as recent trends, current applications, and future potential uses. The book begins by giving a background of organic electroluminescence in terms of history and basic principles. It offers details on the mechanism(s) of electroluminescence in thin organic films. It presentsin-depth discussions of the parameters that control the external electroluminescence quantum efficiency including the photoluminescence quantum yield, the light-output coupling factor, carrier/charge injection and transport, and electron and hole recombination processes in organic semiconductors. The authors address the design and the characterization of amorphous charge transport materials with high glass transition temperatures, light-emitting small molecules and conjugated polymers. The book covers state-of-the-art concepts and technologies such as fluorescent and phosphorescent OLEDs, various approaches for patterning organics, and active matrix organic emissive displays including their back panel thin film transistors and pixel electronics. It concludes by summarizing future directions for OLEDs in organic light-emitting displays, large area distributed solid state light sources, and lasers using organic thin films, nanostructures, and photonic crystals. Organic Electroluminescence is an excellent resource and reference for students, novices, and experts interested in designing and studying light-emitting materials and devices.



Organic Light emitting Materials and Devices

Organic Light emitting Materials and Devices Author
ISBN-10 UOM:39015048146891
Release 1999
Pages
Download Link Click Here

Organic Light emitting Materials and Devices has been writing in one form or another for most of life. You can find so many inspiration from Organic Light emitting Materials and Devices also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Organic Light emitting Materials and Devices book for free.



OLED Fundamentals

OLED Fundamentals Author Daniel J. Gaspar
ISBN-10 9781466515192
Release 2015-05-15
Pages 494
Download Link Click Here

A Comprehensive Source for Taking on the Next Stage of OLED R&D OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes brings together key topics across the field of organic light-emitting diodes (OLEDs), from fundamental chemistry and physics to practical materials science and engineering aspects to design and manufacturing factors. Experts from top academic institutions, industry, and national laboratories provide thorough, up-to-date coverage on the most useful materials, devices, and design and fabrication methods for high-efficiency lighting. The first part of the book covers all the construction materials of OLED devices, from substrate to encapsulation. For the first time in book form, the second part addresses challenges in devices and processing, including architectures and methods for new OLED lighting and display technologies. The book is suitable for a broad audience, including materials scientists, device physicists, synthetic chemists, and electrical engineers. It can also serve as an introduction for graduate students interested in applied aspects of photophysics and electrochemistry in organic thin films.



Organic Electronics

Organic Electronics Author Franky So
ISBN-10 1420072919
Release 2009-11-24
Pages 581
Download Link Click Here

In the near future, organic semiconductors may be used in a variety of products, including flat-screen TVs, e-book readers, and third-generation organic photovoltaics applications, to name just a few. While organic electronics has received increased attention in scientific journals, those working in this burgeoning field require more in-depth coverage of the subject. Considering the rapid development in this field, Organic Electronics: Materials, Processing, Devices and Applications is a long-overdue assessment of state-of-the-art technology in organic electronics. This valuable reference harnesses the insight of various experts in the field, who contribute entire chapters on their area of specialty, covering chemistry and materials, fundamental physics, device processing, fabrication, and applications. Coverage includes cutting-edge advances in: Organic vapor phase deposition to fabricate organic nanostructures Organic semiconductor device physics Organic thin film and vertical transistors Organic photovoltaic cells OLED technologies for flat panel displays and lighting With its detailed discussion of the latest developments in the field of organic semiconductor materials and devices, this versatile book is ideally suited as a reference tool for scientists, engineers, and researchers or as an overview for those new to the field. In either capacity, its broad range of material will serve as a base for the further development of new sciences and technologies in this area.



Luminescent Materials and Applications

Luminescent Materials and Applications Author Adrian Kitai
ISBN-10 0470985674
Release 2008-04-30
Pages 292
Download Link Click Here

Luminescence, for example, as fluorescence, bioluminescence, and phosphorescence, can result from chemical changes, electrical energy, subatomic motions, reactions in crystals, or stimulation of an atomic system. This subject continues to have a major technological role for humankind in the form of applications such as organic and inorganic light emitters for flat panel and flexible displays such as plasma displays, LCD displays, and OLED displays. Luminescent Materials and Applications describes a wide range of materials and applications that are of current interest including organic light emitting materials and devices, inorganic light emitting diode materials and devices, down-conversion materials, nanomaterials, and powder and thin-film electroluminescent phosphor materials and devices. In addition, both the physics and the materials aspects of the field of solid-state luminescence are presented. Thus, the book may be used as a reference to gain an understanding of various types and mechanisms of luminescence and of the implementation of luminescence into practical devices. The book is aimed at postgraduate students (physicists, electrical engineers, chemical engineers, materials scientists, and engineers) and researchers in industry, for example, at lighting and display companies and academia involved in studying conduction in solids and electronic materials. It will also provide an excellent starting point for all scientists interested in luminescent materials. Finally it is hoped that this book will not only educate, but also stimulate further progress in this rapidly evolving field.



Organic Light Emitting Diodes

Organic Light Emitting Diodes Author Jan Kalinowski
ISBN-10 9781420030648
Release 2004-11-29
Pages 480
Download Link Click Here

Organic Light Emitting Diodes: Principles, Characteristics, and Processes presents recent developments in organic electroluminescence and their application to light emitting diodes. In six chapters and complete with an extensive set of references, it describes and illustrates the physical principles of organic LEDs and their electrical and optical characteristics with a wide range of examples and practical studies. The author presents a unified approach to the description and functioning of organic LEDs, based on a comprehensive background of relevant physical processes and provides a clear foundation for the prediction and design of new improved electroluminescent devices.



Handbook of Organic Materials for Optical and Opto Electronic Devices

Handbook of Organic Materials for Optical and  Opto Electronic Devices Author Oksana Ostroverkhova
ISBN-10 9780857098764
Release 2013-08-31
Pages 832
Download Link Click Here

Small molecules and conjugated polymers, the two main types of organic materials used for optoelectronic and photonic devices, can be used in a number of applications including organic light-emitting diodes, photovoltaic devices, photorefractive devices and waveguides. Organic materials are attractive due to their low cost, the possibility of their deposition from solution onto large-area substrates, and the ability to tailor their properties. The Handbook of organic materials for optical and (opto)electronic devices provides an overview of the properties of organic optoelectronic and nonlinear optical materials, and explains how these materials can be used across a range of applications. Parts one and two explore the materials used for organic optoelectronics and nonlinear optics, their properties, and methods of their characterization illustrated by physical studies. Part three moves on to discuss the applications of optoelectronic and nonlinear optical organic materials in devices and includes chapters on organic solar cells, electronic memory devices, and electronic chemical sensors, electro-optic devices. The Handbook of organic materials for optical and (opto)electronic devices is a technical resource for physicists, chemists, electrical engineers and materials scientists involved in research and development of organic semiconductor and nonlinear optical materials and devices. Comprehensively examines the properties of organic optoelectronic and nonlinear optical materials Discusses their applications in different devices including solar cells, LEDs and electronic memory devices An essential technical resource for physicists, chemists, electrical engineers and materials scientists



Principles and Applications of Organic Light Emitting Diodes OLEDs

Principles and Applications of Organic Light Emitting Diodes  OLEDs Author N. Thejo Kalyani
ISBN-10 9780081012499
Release 2017-05-15
Pages 332
Download Link Click Here

Principles and Applications of Organic Light Emitting Diodes (OLEDs)explores the ways in which the development of organic semiconductor materials is opening up new applications in electronic and optoelectronic luminescent devices. The book begins by covering the principles of luminescence and the luminescent properties of organic semiconductors. It then covers the development of luminescent materials for OLEDs, discussing the advantages and disadvantages of organic versus inorganic luminescent materials. The fabrication and characterization of OLEDs is also covered in detail, including information on, and comparisons of, vacuum deposition and solution techniques. Finally, applications of OLEDs are explored, including OLEDs in solid-state lighting, colored lighting, displays and potential future applications, such as ultra-thin and flexible technologies. This book is an excellent resource both for experts and newcomers to the field of organic optoelectronics and OLEDs. It is ideal for scientists working on optical devices, lighting, display and imaging technologies, and for all those engaged in research in photonics, luminescence and optical materials. Provides a one-stop guide to OLED technology for the benefit of newcomers to the field of organic optoelectronics Comprehensively covers the luminescent properties of organic semiconductors and their development into OLED materials Offers practical information on OLED fabrication and their applications in solid-state lighting and displays, making this essential reading for optoelectronics engineers and materials scientists



Organic Light Emitting Devices

Organic Light Emitting Devices Author Joseph Shinar
ISBN-10 9780387217208
Release 2013-03-20
Pages 309
Download Link Click Here

Although it has long been possible to make organic materials emit light, it has only recently become possible to do so at the level and with the efficiency and control necessary to make the materials a useful basis for illumination in any but the most specialized uses. This book surveys the current status of the field.



Introduction to Organic Electronic and Optoelectronic Materials and Devices Second Edition

Introduction to Organic Electronic and Optoelectronic Materials and Devices  Second Edition Author Sam-Shajing Sun
ISBN-10 9781466585119
Release 2016-10-03
Pages 1069
Download Link Click Here

This book covers the combined subjects of organic electronic and optoelectronic materials/devices. It is designed for classroom instruction at the senior college level. Highlighting emerging organic and polymeric optoelectronic materials and devices, it presents the fundamentals, principle mechanisms, representative examples, and key data.



Device Architecture and Materials for Organic Light Emitting Devices

Device Architecture and Materials for Organic Light Emitting Devices Author Sarah Schols
ISBN-10 9400716087
Release 2011-05-10
Pages 154
Download Link Click Here

Device Architecture and Materials for Organic Light-Emitting Devices focuses on the design of new device and material concepts for organic light-emitting devices, thereby targeting high current densities and an improved control of the triplet concentration. A new light-emitting device architecture, the OLED with field-effect electron transport, is demonstrated. This device is a hybrid between a diode and a field-effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light-emitting zone, reducing optical absorption losses. The electrons injected by the cathode accumulate at an organic heterojunction and are transported to the light-emission zone by field-effect. High mobilities for charge carriers are achieved in this way, enabling a high current density and a reduced number of charge carriers in the device. Pulsed excitation experiments show that pulses down to 1 μs can be applied to this structure without affecting the light intensity, suggesting that pulsed excitation might be useful to reduce the accumulation of triplets in the device. The combination of all these properties makes the OLED with field-effect electron transport particularly interesting for waveguide devices and future electrically pumped lasers. In addition, triplet-emitter doped organic materials, as well as the use of triplet scavengers in conjugated polymers are investigated.



Nitride Semiconductor Light Emitting Diodes LEDs

Nitride Semiconductor Light Emitting Diodes  LEDs Author Jian-Jang Huang
ISBN-10 9780857099303
Release 2014-02-14
Pages 650
Download Link Click Here

The development of nitride-based light-emitting diodes (LEDs) has led to advancements in high-brightness LED technology for solid-state lighting, handheld electronics, and advanced bioengineering applications. Nitride Semiconductor Light-Emitting Diodes (LEDs) reviews the fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-based LED design considerations. Part one reviews the fabrication of nitride semiconductor LEDs. Chapters cover molecular beam epitaxy (MBE) growth of nitride semiconductors, modern metalorganic chemical vapor deposition (MOCVD) techniques and the growth of nitride-based materials, and gallium nitride (GaN)-on-sapphire and GaN-on-silicon technologies for LEDs. Nanostructured, non-polar and semi-polar nitride-based LEDs, as well as phosphor-coated nitride LEDs, are also discussed. Part two covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots. Further chapters discuss the development of LED encapsulation technology and the fundamental efficiency droop issues in gallium indium nitride (GaInN) LEDs. Finally, part three highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infrared emitters, and automotive lighting. Nitride Semiconductor Light-Emitting Diodes (LEDs) is a technical resource for academics, physicists, materials scientists, electrical engineers, and those working in the lighting, consumer electronics, automotive, aviation, and communications sectors. Reviews fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-based LED design considerations Covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots Highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infra-red emitters, and automotive lighting



Organic Electroluminescent Materials and Devices

Organic Electroluminescent Materials and Devices Author Seizo Miyata
ISBN-10 2919875108
Release 1997-07-16
Pages 496
Download Link Click Here

Reports on the progress in organic materials that can glow a number of different colors; may soon be used in a number of applications such as panel displays, backlights of liquid crystal displays, indicator lights, light sources for optical communication, watches, toys, and microwave ovens; and has already been used in a prototype of a 40-inch color plasma display panel. The topics include electron processes in organic electroluminescence, making polymer light-emitting diodes with polythiophenes, electroluminescence and photoluminescence in fullerenes, chelate metal complexes, white-light-emitting diodes, the growth and characterization of display devices using vacuum-deposited organic materials. and novel fabrication techniques for devices. Annotation copyrighted by Book News, Inc., Portland, OR



Organic Photovoltaics

Organic Photovoltaics Author Sam-Shajing Sun
ISBN-10 9781351837064
Release 2017-12-21
Pages 664
Download Link Click Here

Recently developed organic photovoltaics (OPVs) show distinct advantages over their inorganic counterparts due to their lighter weight, flexible shape, versatile materials synthesis and device fabrication schemes, and low cost in large-scale industrial production. Although many books currently exist on general concepts of PV and inorganic PV materials and devices, few are available that offer a comprehensive overview of recently fast developing organic and polymeric PV materials and devices. Organic Photovoltaics: Mechanisms, Materials, and Devices fills this gap. The book provides an international perspective on the latest research in this rapidly expanding field with contributions from top experts around the world. It presents a unified approach comprising three sections: General Overviews; Mechanisms and Modeling; and Materials and Devices. Discussions include sunlight capture, exciton diffusion and dissociation, interface properties, charge recombination and migration, and a variety of currently developing OPV materials/devices. The book also includes two forewords: one by Nobel Laureate Dr. Alan J. Heeger, and the other by Drs. Aloysius Hepp and Sheila Bailey of NASA Glenn Research Center. Organic Photovoltaics equips students, researchers, and engineers with knowledge of the mechanisms, materials, devices, and applications of OPVs necessary to develop cheaper, lighter, and cleaner renewable energy throughout the coming decades.



Handbook of GaN Semiconductor Materials and Devices

Handbook of GaN Semiconductor Materials and Devices Author Wengang (Wayne) Bi
ISBN-10 9781351648059
Release 2017-10-20
Pages 686
Download Link Click Here

This book addresses material growth, device fabrication, device application, and commercialization of energy-efficient white light-emitting diodes (LEDs), laser diodes, and power electronics devices. It begins with an overview on basics of semiconductor materials, physics, growth and characterization techniques, followed by detailed discussion of advantages, drawbacks, design issues, processing, applications, and key challenges for state of the art GaN-based devices. It includes state of the art material synthesis techniques with an overview on growth technologies for emerging bulk or free standing GaN and AlN substrates and their applications in electronics, detection, sensing, optoelectronics and photonics. Wengang (Wayne) Bi is Distinguished Chair Professor and Associate Dean in the College of Information and Electrical Engineering at Hebei University of Technology in Tianjin, China. Hao-chung (Henry) Kuo is Distinguished Professor and Associate Director of the Photonics Center at National Chiao-Tung University, Hsin-Tsu, Taiwan, China. Pei-Cheng Ku is an associate professor in the Department of Electrical Engineering & Computer Science at the University of Michigan, Ann Arbor, USA. Bo Shen is the Cheung Kong Professor at Peking University in China.