Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Organic Photovoltaics

Organic Photovoltaics Author Sam-Shajing Sun
ISBN-10 1420026356
Release 2005-03-29
Pages 664
Download Link Click Here

Recently developed organic photovoltaics (OPVs) show distinct advantages over their inorganic counterparts due to their lighter weight, flexible shape, versatile materials synthesis and device fabrication schemes, and low cost in large-scale industrial production. Although many books currently exist on general concepts of PV and inorganic PV materials and devices, few are available that offer a comprehensive overview of recently fast developing organic and polymeric PV materials and devices. Organic Photovoltaics: Mechanisms, Materials, and Devices fills this gap. The book provides an international perspective on the latest research in this rapidly expanding field with contributions from top experts around the world. It presents a unified approach comprising three sections: General Overviews; Mechanisms and Modeling; and Materials and Devices. Discussions include sunlight capture, exciton diffusion and dissociation, interface properties, charge recombination and migration, and a variety of currently developing OPV materials/devices. The book also includes two forewords: one by Nobel Laureate Dr. Alan J. Heeger, and the other by Drs. Aloysius Hepp and Sheila Bailey of NASA Glenn Research Center. Organic Photovoltaics equips students, researchers, and engineers with knowledge of the mechanisms, materials, devices, and applications of OPVs necessary to develop cheaper, lighter, and cleaner renewable energy throughout the coming decades.



Printable Solar Cells

Printable Solar Cells Author Nurdan Demirci Sankir
ISBN-10 9781119283737
Release 2017-04-19
Pages 576
Download Link Click Here

This book provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of the Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV.



Multi Frequency EPR Spectroscopy of Conjugated Polymers and Their Nanocomposites

Multi Frequency EPR Spectroscopy of Conjugated Polymers and Their Nanocomposites Author Victor I. Krinichnyi
ISBN-10 9781315349626
Release 2016-10-14
Pages 314
Download Link Click Here

Conjugated polymeric materials and their nanocomposites are widely used for the creation of alternative sources of renewable energy, cell phone screens, mobile gadgets, video players and OLED-TV, as well as organic diodes, transistors, sensors, etc. with field-dependent and spin-assisted electronic properties. Multifrequency EPR Spectroscopy methods can help researchers optimize their structural, magnetic and electronic properties for the creation of more efficient molecular devices. This book will acquaint the reader with the basic properties of conjugated polymers, the fundamentals of EPR Spectroscopy, and the information that can be obtained at different wavebands of EPR spectroscopy.



Organic Solar Cells

Organic Solar Cells Author Wallace C.H. Choy
ISBN-10 9781447148234
Release 2012-11-19
Pages 266
Download Link Click Here

Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.



Comprehensive Nanoscience and Technology

Comprehensive Nanoscience and Technology Author
ISBN-10 0123743966
Release 2010-10-29
Pages 2774
Download Link Click Here

From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.



Carbon Nanomaterials Second Edition

Carbon Nanomaterials  Second Edition Author Yury Gogotsi
ISBN-10 9781439897812
Release 2013-10-24
Pages 529
Download Link Click Here

This book provides information on synthesis, properties, and applications of carbon nanomaterials. With novel materials, such as graphene (atomically flat carbon) or carbon onions (carbon nanospheres), the family of carbon nanomaterials is rapidly growing. This book provides a state-of-the-art overview and in-depth analysis of the most important carbon nanomaterials. Each chapter is written by a leading expert in the field which ensures that both, a review on the subject along with emerging perspectives are provided to the reader.



Organic Photovoltaics

Organic Photovoltaics Author Christoph Joseph Brabec
ISBN-10 9783662051870
Release 2013-11-21
Pages 300
Download Link Click Here

The present volume describes and explains the fundamentals of organic/plastic solar cells in a manner accessible to both researchers and students. It provides an up-to-date and comprehensive account of these materials and corresponding devices, which will play a key role in future solar energy systems.



Spectroscopy of Polymer Nanocomposites

Spectroscopy of Polymer Nanocomposites Author Sabu Thomas
ISBN-10 9780323413916
Release 2016-02-16
Pages 498
Download Link Click Here

Spectroscopy of Polymer Nanocomposites covers all aspects of the spectroscopic characterization of polymer nanocomposites. More than 25 spectroscopy characterization techniques – almost all used in materials science – are treated in the book, with discussion of their potentialities and limitations. By comparing the techniques with each other and presenting the techniques together with their specific application areas, the book provides scientists and engineers the information needed for solving specific problems and choosing the right technique for analyzing the material structure. From this, the dispersion structure of fillers, property relations and filler-polymer interactions can be determined, and, ultimately, the right materials can be chosen for the right applications. Besides the techniques and structure-property relations, aspects covered include: phase segregation of filler particles, filler agglomeration and deagglomeration, filler dispersion, filler-polymer interactions, surfaces and interfaces. The book also examines recent developments, as well as unresolved issues and new challenges, in the characterization of surfaces and interfaces in polymer nanocomposites. This handpicked selection of topics, and the combined expertise of contributors from industry, academia, government and private research organizations across the globe, make this survey an outstanding reference source for anyone involved in the field of polymer nanocomposites in academia or industry. Provides comprehensive coverage of spectroscopy techniques for analyzing polymer nanocomposites Enables researchers and engineers to choose the right technique and make better materials decisions in research and a range of industries Presents the fundamentals, information on structure-property relations, and all other aspects relevant for understanding spectroscopic analyses of nanoreinforced polymers and their applications



Introduction to Organic Electronic and Optoelectronic Materials and Devices

Introduction to Organic Electronic and Optoelectronic Materials and Devices Author Sam-Shajing Sun
ISBN-10 9781420009194
Release 2008-05-29
Pages 936
Download Link Click Here

Reflecting rapid growth in research and development on organic/polymeric electronic and photonic materials and devices, Introduction to Organic Electronic and Optoelectronic Materials and Devices provides comprehensive coverage of the state-of-the-art in an accessible format. The book presents fundamentals, principles, and mechanisms complemented by examples, experimental data, and more than 600 figures, more than 500 equations, about 70 tables, more than 150 exercise questions, and more than 1500 reference citations.



Solar Cell Device Physics

Solar Cell Device Physics Author Stephen Fonash
ISBN-10 9780323154635
Release 2012-12-02
Pages 352
Download Link Click Here

Solar Cell Device Physics offers a balanced, in-depth qualitative and quantitative treatment of the physical principles and operating characteristics of solar cell devices. Topics covered include photovoltaic energy conversion and solar cell materials and structures, along with homojunction solar cells. Semiconductor-semiconductor heterojunction cells and surface-barrier solar cells are also discussed. This book consists of six chapters and begins by introducing the reader to the basic physical principles and materials properties that are the foundations of photovoltaic energy conversion, with emphasis on various photovoltaic devices capable of efficiently converting solar energy into usable electrical energy. The electronic and optical properties of crystalline, polycrystalline, and amorphous materials with both organic and inorganic materials are considered, together with the manner in which these properties change from one material class to another and the implications of such changes for photovoltaics. Generation, recombination, and bulk transport are also discussed. The two mechanisms of photocarrier collection in solar cells, drift and diffusion, are then compared. The remaining chapters focus on specific solar cell device classes defined in terms of the interface structure employed: homojunctions, semiconductor-semiconductor heterojunctions, and surface-barrier devices. This monograph is appropriate for use as a textbook for graduate students in engineering and the sciences and for seniors in electrical engineering and applied physics, as well as a reference book for those actively involved in solar cell research and development.



Iontronics

Iontronics Author Janelle Leger
ISBN-10 1439806896
Release 2016-04-19
Pages 247
Download Link Click Here

The field of organic electronics promises exciting new technologies based on inexpensive and mechanically flexible electronic devices, and is now seeing the beginning of commercial success. On the sidelines of this increasingly well-established field are several emerging technologies with innovative mechanisms and functions that utilize the mixed ionic/electronic conducting character of conjugated organic materials. Iontronics: Ionic Carriers in Organic Electronic Materials and Devices explores the potential of these materials, which can endow electronic devices with unique functionalities. Fundamental science and applications With contributions from a community of experts, the book focuses on the use of ionic functions to define the principle of operation in polymer devices. It begins by reviewing the scientific understanding and important scientific discoveries in the electrochemistry of conjugated polymers. It examines the known effects of ion incorporation, including the theory and modulation of electrochemistry in polymer films, and it explores the coupling of electronic and ionic transport in polymer films. The authors also describe applications that use this technology, including polymer electrochromic devices, artificial muscles, light-emitting electrochemical cells, and biosensors, and they discuss the fundamental technological hurdles in these areas. The changes in materials properties and device characteristics due to ionic conductivity and electrochemical doping in electrically conductive organic materials, as well as the importance of these processes in a number of different and exciting technologies, point to a large untapped potential in the development of new applications and novel device architecture. This volume captures the state of the science in this burgeoning field.



Nanostructured Materials for Solar Energy Conversion

Nanostructured Materials for Solar Energy Conversion Author Tetsuo Soga
ISBN-10 0080468306
Release 2006-12-14
Pages 614
Download Link Click Here

Nanostructured Materials for Solar Energy Conversion covers a wide variety of materials and device types from inorganic materials to organic materials. This book deals with basic semiconductor physics, modelling of nanostructured solar cell, nanostructure of conventional solar cells such as silicon, CIS and CdTe, dye-sensitized solar cell, organic solar cell, photosynthetic materials, fullerene, extremely thin absorber (ETA) solar cell, quantum structured solar cell, intermediate band solar cell, carbon nanotube, etc. including basic principle and the latest results. There are many books written on conventional p-n junction solar cells, but few books focus on new concepts in this area. * Focuses on the use of nanostructured materials for solar energy * Looks at a wide variety of materials and device types * Covers both organic and inorganic materials



Introduction to Organic Electronic and Optoelectronic Materials and Devices Second Edition

Introduction to Organic Electronic and Optoelectronic Materials and Devices  Second Edition Author Sam-Shajing Sun
ISBN-10 9781466585126
Release 2016-08-19
Pages 1091
Download Link Click Here

This book covers the combined subjects of organic electronic and optoelectronic materials/devices. It is designed for classroom instruction at the senior college level. Highlighting emerging organic and polymeric optoelectronic materials and devices, it presents the fundamentals, principle mechanisms, representative examples, and key data.



Introduction to Nanoscience and Nanotechnology

Introduction to Nanoscience and Nanotechnology Author
ISBN-10 UCSC:32106019857181
Release 2009
Pages 1593
Download Link Click Here

The maturation of nanotechnology has revealed it to be a unique and distinct discipline rather than a specialization within a larger field. Its textbook cannot afford to be a chemistry, physics, or engineering text focused on nano. It must be an integrated, multidisciplinary, and specifically nano textbook. The archetype of the modern nano textbook, Introduction to Nanoscience and Nanotechnology builds a solid background in characterization and fabrication methods while integrating the physics, chemistry, and biology facets. The remainder of this color text focuses on applications, examining engineering aspects as well as nanomaterials and industry-specific applications in such areas as energy, electronics, and biotechnology. Also available in two course-specific volumes: Introduction to Nanoscience elucidates the nanoscale along with the societal impacts of nanoscience, then presents an overview of characterization and fabrication methods. The authors systematically discuss the chemistry, physics, and biology aspects of nanoscience, providing a complete picture of the challenges, opportunities, and inspirations posed by each facet before giving a brief glimpse at nanoscience in action: nanotechnology. Fundamentals of Nanotechnology surveys the field’s broad landscape, exploring the physical basics such as nanorheology, nanofluidics, and nanomechanics as well as industrial concerns such as manufacturing, reliability, and safety. The authors then explore the vast range of nanomaterials and systematically outline devices and applications in various industrial sectors. Qualifying instructors who purchase either of these volumes (or the combined set) are given online access to a wealth of instructional materials. These include detailed lecture notes, review summaries, slides, exercises, and more. The authors provide enough material for both one- and two-semester courses.



Organic Photoreceptors for Imaging Systems

Organic Photoreceptors for Imaging Systems Author Borsenberger
ISBN-10 0824789261
Release 1993-08-05
Pages 472
Download Link Click Here

This reference covers in detail the preparation and application of current and emerging organic materials used as xerographic photoreceptors, emphasizing the photo-electric properties of organic solids and evaluating their potential use in xerography.;Reviewing the development of xerography and the steps in the xerographic process, this volume: summarizes the properties, advantages and disadvantages of various classes of materials used as photoreceptors; describes the methods of characterizing the sensitometry of xerographic photoreceptors; examines the physics and chemistry of photogeneration and charge transport processes; and elucidates the sensimetry of different classes of organic materials.;Organic Photoreceptors for Imaging Systems is intended for imaging scientists, optical engineers and physicists, organic chemists, materials scienctists and students in these disciplines.



Organic Solar Cells

Organic Solar Cells Author Qiquan Qiao
ISBN-10 9781482229844
Release 2015-03-19
Pages 446
Download Link Click Here

Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.



Handbook of Organic Materials for Optical and Opto Electronic Devices

Handbook of Organic Materials for Optical and  Opto Electronic Devices Author Oksana Ostroverkhova
ISBN-10 9780857098764
Release 2013-08-31
Pages 832
Download Link Click Here

Small molecules and conjugated polymers, the two main types of organic materials used for optoelectronic and photonic devices, can be used in a number of applications including organic light-emitting diodes, photovoltaic devices, photorefractive devices and waveguides. Organic materials are attractive due to their low cost, the possibility of their deposition from solution onto large-area substrates, and the ability to tailor their properties. The Handbook of organic materials for optical and (opto)electronic devices provides an overview of the properties of organic optoelectronic and nonlinear optical materials, and explains how these materials can be used across a range of applications. Parts one and two explore the materials used for organic optoelectronics and nonlinear optics, their properties, and methods of their characterization illustrated by physical studies. Part three moves on to discuss the applications of optoelectronic and nonlinear optical organic materials in devices and includes chapters on organic solar cells, electronic memory devices, and electronic chemical sensors, electro-optic devices. The Handbook of organic materials for optical and (opto)electronic devices is a technical resource for physicists, chemists, electrical engineers and materials scientists involved in research and development of organic semiconductor and nonlinear optical materials and devices. Comprehensively examines the properties of organic optoelectronic and nonlinear optical materials Discusses their applications in different devices including solar cells, LEDs and electronic memory devices An essential technical resource for physicists, chemists, electrical engineers and materials scientists