Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Parabolic Equations in Biology

Parabolic Equations in Biology Author Benoît Perthame
ISBN-10 9783319195001
Release 2015-09-09
Pages 199
Download Link Click Here

This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.

Transport Equations in Biology

Transport Equations in Biology Author Benoît Perthame
ISBN-10 9783764378424
Release 2006-12-14
Pages 198
Download Link Click Here

This book presents models written as partial differential equations and originating from various questions in population biology, such as physiologically structured equations, adaptive dynamics, and bacterial movement. Its purpose is to derive appropriate mathematical tools and qualitative properties of the solutions. The book further contains many original PDE problems originating in biosciences.

Math and Bio 2010

Math and Bio 2010 Author Lynn Arthur Steen
ISBN-10 0883858185
Release 2005-01-01
Pages 161
Download Link Click Here

Math & Bio 2010: Linking Undergraduate Disciplines envisages a new educational paradigm in which the disciplines of mathematics and biology, currently quite separate, will be productively linked in the undergraduate science programs of the 21st century. As a science, biology depends increasingly on data, algorithms, and models; in virtually every respect, it is becoming more quantitative, more computational, and more mathematical. While these trends are related, they are not the same; they represent, rather, three different perspectives on what many are calling the "new biology." All three methods---quantitative, computational, mathematical---are spreading across the entire landscape of biological science from molecular to cellular, organismic and ecological. The aim of this volume is to alert members of both communities---biological and mathematical---to the expanding and exciting challenges of interdisciplinary work in these fields.

Mathematical Methods for Cancer Evolution

Mathematical Methods for Cancer Evolution Author Takashi Suzuki
ISBN-10 9789811036712
Release 2017-06-19
Pages 144
Download Link Click Here

The purpose of this monograph is to describe recent developments in mathematical modeling and mathematical analysis of certain problems arising from cell biology. Cancer cells and their growth via several stages are of particular interest. To describe these events, multi-scale models are applied, involving continuously distributed environment variables and several components related to particles. Hybrid simulations are also carried out, using discretization of environment variables and the Monte Carlo method for the principal particle variables. Rigorous mathematical foundations are the bases of these tools.The monograph is composed of four chapters. The first three chapters are concerned with modeling, while the last one is devoted to mathematical analysis. The first chapter deals with molecular dynamics occurring at the early stage of cancer invasion. A pathway network model based on a biological scenario is constructed, and then its mathematical structures are determined. In the second chapter mathematical modeling is introduced, overviewing several biological insights, using partial differential equations. Transport and gradient are the main factors, and several models are introduced including the Keller‒Segel systems. The third chapter treats the method of averaging to model the movement of particles, based on mean field theories, employing deterministic and stochastic approaches. Then appropriate parameters for stochastic simulations are examined. The segment model is finally proposed as an application. In the fourth chapter, thermodynamic features of these models and how these structures are applied in mathematical analysis are examined, that is, negative chemotaxis, parabolic systems with non-local term accounting for chemical reactions, mass-conservative reaction-diffusion systems, and competitive systems of chemotaxis. The monograph concludes with the method of the weak scaling limit applied to the Smoluchowski‒Poisson equation.

The Mathematics Behind Biological Invasions

The Mathematics Behind Biological Invasions Author Mark A. Lewis
ISBN-10 9783319320434
Release 2016-05-05
Pages 362
Download Link Click Here

This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecology.

The Mathematics of Diffusion

The Mathematics of Diffusion Author John Crank
ISBN-10 0198534116
Release 1979
Pages 414
Download Link Click Here

Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.

Mathematical Models in Biology

Mathematical Models in Biology Author Leah Edelstein-Keshet
ISBN-10 0898719143
Release 1988
Pages 586
Download Link Click Here

Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.

Nonlinear phenomena in mathematical sciences

Nonlinear phenomena in mathematical sciences Author V. Lakshmikantham
ISBN-10 UCAL:B4406075
Release 1982
Pages 1035
Download Link Click Here

Nonlinear phenomena in mathematical sciences has been writing in one form or another for most of life. You can find so many inspiration from Nonlinear phenomena in mathematical sciences also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Nonlinear phenomena in mathematical sciences book for free.

Mathematical Models and Methods for Living Systems

Mathematical Models and Methods for Living Systems Author Pasquale Ciarletta
ISBN-10 9783319426792
Release 2016-11-09
Pages 321
Download Link Click Here

The aim of these lecture notes is to give an introduction to several mathematical models and methods that can be used to describe the behaviour of living systems. This emerging field of application intrinsically requires the handling of phenomena occurring at different spatial scales and hence the use of multiscale methods.Modelling and simulating the mechanisms that cells use to move, self-organise and develop in tissues is not only fundamental to an understanding of embryonic development, but is also relevant in tissue engineering and in other environmental and industrial processes involving the growth and homeostasis of biological systems. Growth and organization processes are also important in many tissue degeneration and regeneration processes, such as tumour growth, tissue vascularization, heart and muscle functionality, and cardio-vascular diseases.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations Author Randall J. LeVeque
ISBN-10 0898717833
Release 2007
Pages 339
Download Link Click Here

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Mathematical Modeling in Systems Biology

Mathematical Modeling in Systems Biology Author Brian P. Ingalls
ISBN-10 9780262315647
Release 2013-07-05
Pages 424
Download Link Click Here

Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels.The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3--8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.

Applied Nonlinear Analysis

Applied Nonlinear Analysis Author V. Lakshmikantham
ISBN-10 9781483272061
Release 2014-05-12
Pages 746
Download Link Click Here

Applied Nonlinear Analysis contains the proceedings of an International Conference on Applied Nonlinear Analysis, held at the University of Texas at Arlington, on April 20-22, 1978. The papers explore advances in applied nonlinear analysis, with emphasis on reaction-diffusion equations; optimization theory; constructive techniques in numerical analysis; and applications to physical and life sciences. In the area of reaction-diffusion equations, the discussions focus on nonlinear oscillations; rotating spiral waves; stability and asymptotic behavior; discrete-time models in population genetics; and predator-prey systems. In optimization theory, the following topics are considered: inverse and ill-posed problems with application to geophysics; conjugate gradients; and quasi-Newton methods with applications to large-scale optimization; sequential conjugate gradient-restoration algorithm for optimal control problems with non-differentiable constraints; differential geometric methods in nonlinear programming; and equilibria in policy formation games with random voting. In the area of constructive techniques in numerical analysis, numerical and approximate solutions of boundary value problems for ordinary and partial differential equations are examined, along with finite element analysis and constructive techniques for accretive and monotone operators. In addition, the book explores turbulent fluid flows; stability problems for Hopf bifurcation; product integral representation of Volterra equations with delay; weak solutions of variational problems, nonlinear integration on measures; and fixed point theory. This monograph will be helpful to students, practitioners, and researchers in the field of mathematics.

Mathematical Modeling of Biological Processes

Mathematical Modeling of Biological Processes Author Avner Friedman
ISBN-10 9783319083148
Release 2014-09-19
Pages 154
Download Link Click Here

This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

Topics in Mathematical Modeling

Topics in Mathematical Modeling Author K. K. Tung
ISBN-10 9781400884056
Release 2016-06-14
Pages 336
Download Link Click Here

Topics in Mathematical Modeling is an introductory textbook on mathematical modeling. The book teaches how simple mathematics can help formulate and solve real problems of current research interest in a wide range of fields, including biology, ecology, computer science, geophysics, engineering, and the social sciences. Yet the prerequisites are minimal: calculus and elementary differential equations. Among the many topics addressed are HIV; plant phyllotaxis; global warming; the World Wide Web; plant and animal vascular networks; social networks; chaos and fractals; marriage and divorce; and El Niño. Traditional modeling topics such as predator-prey interaction, harvesting, and wars of attrition are also included. Most chapters begin with the history of a problem, follow with a demonstration of how it can be modeled using various mathematical tools, and close with a discussion of its remaining unsolved aspects. Designed for a one-semester course, the book progresses from problems that can be solved with relatively simple mathematics to ones that require more sophisticated methods. The math techniques are taught as needed to solve the problem being addressed, and each chapter is designed to be largely independent to give teachers flexibility. The book, which can be used as an overview and introduction to applied mathematics, is particularly suitable for sophomore, junior, and senior students in math, science, and engineering.

Mathematical Models and Their Analysis

Mathematical Models and Their Analysis Author Frederic Y. M. Wan
ISBN-10 0060469021
Release 1989
Pages 394
Download Link Click Here

Mathematical Models and Their Analysis has been writing in one form or another for most of life. You can find so many inspiration from Mathematical Models and Their Analysis also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Mathematical Models and Their Analysis book for free.

Practical Applied Mathematics

Practical Applied Mathematics Author Sam Howison
ISBN-10 0521842743
Release 2005-03-24
Pages 326
Download Link Click Here

Drawing from a wide variety of mathematical subjects, this book aims to show how mathematics is realised in practice in the everyday world. Dozens of applications are used to show that applied mathematics is much more than a series of academic calculations. Mathematical topics covered include distributions, ordinary and partial differential equations, and asymptotic methods as well as basics of modelling. The range of applications is similarly varied, from the modelling of hair to piano tuning, egg incubation and traffic flow. The style is informal but not superficial. In addition, the text is supplemented by a large number of exercises and sideline discussions, assisting the reader's grasp of the material. Used either in the classroom by upper-undergraduate students, or as extra reading for any applied mathematician, this book illustrates how the reader's knowledge can be used to describe the world around them.

Nonlocal Diffusion Problems

Nonlocal Diffusion Problems Author Fuensanta Andreu-Vaillo
ISBN-10 9780821852309
Release 2010
Pages 256
Download Link Click Here

Nonlocal diffusion problems arise in a wide variety of applications, including biology, image processing, particle systems, coagulation models, and mathematical finance. These types of problems are also of great interest for their purely mathematical content. This book presents recent results on nonlocal evolution equations with different boundary conditions, starting with the linear theory and moving to nonlinear cases, including two nonlocal models for the evolution of sandpiles. Both existence and uniqueness of solutions are considered, as well as their asymptotic behaviour. Moreover, the authors present results concerning limits of solutions of the nonlocal equations as a rescaling parameter tends to zero. With these limit procedures the most frequently used diffusion models are recovered: the heat equation, the $p$-Laplacian evolution equation, the porous media equation, the total variation flow, a convection-diffusion equation and the local models for the evolution of sandpiles due to Aronsson-Evans-Wu and Prigozhin. Readers are assumed to be familiar with the basic concepts and techniques of functional analysis and partial differential equations. The text is otherwise self-contained, with the exposition emphasizing an intuitive understanding and results given with full proofs. It is suitable for graduate students or researchers. The authors cover a subject that has received a great deal of attention in recent years. The book is intended as a reference tool for a general audience in analysis and PDEs, including mathematicians, engineers, physicists, biologists, and others interested in nonlocal diffusion problems.