Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Parallel Programming

Parallel Programming Author Thomas Rauber
ISBN-10 9783642378010
Release 2013-06-13
Pages 516
Download Link Click Here

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. For this second edition, all chapters have been carefully revised. The chapter on architecture of parallel systems has been updated considerably, with a greater emphasis on the architecture of multicore systems and adding new material on the latest developments in computer architecture. Lastly, a completely new chapter on general-purpose GPUs and the corresponding programming techniques has been added. The main goal of the book is to present parallel programming techniques that can be used in many situations for a broad range of application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The material presented has been used for courses in parallel programming at different universities for many years.



Parallel Programming

Parallel Programming Author Thomas Rauber
ISBN-10 9783642048173
Release 2010-03-10
Pages 455
Download Link Click Here

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. The main goal of the book is to present parallel programming techniques that can be used in many situations for many application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The presented material has been used for courses in parallel programming at different universities for many years.



Parallel Programming

Parallel Programming Author Thomas Rauber
ISBN-10 9783642048180
Release 2010-03-16
Pages 456
Download Link Click Here

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. The main goal of the book is to present parallel programming techniques that can be used in many situations for many application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The presented material has been used for courses in parallel programming at different universities for many years.



An Introduction to Parallel Programming

An Introduction to Parallel Programming Author Peter Pacheco
ISBN-10 0080921442
Release 2011-02-17
Pages 392
Download Link Click Here

An Introduction to Parallel Programming is the first undergraduate text to directly address compiling and running parallel programs on the new multi-core and cluster architecture. It explains how to design, debug, and evaluate the performance of distributed and shared-memory programs. The author Peter Pacheco uses a tutorial approach to show students how to develop effective parallel programs with MPI, Pthreads, and OpenMP, starting with small programming examples and building progressively to more challenging ones. The text is written for students in undergraduate parallel programming or parallel computing courses designed for the computer science major or as a service course to other departments; professionals with no background in parallel computing. Takes a tutorial approach, starting with small programming examples and building progressively to more challenging examples Focuses on designing, debugging and evaluating the performance of distributed and shared-memory programs Explains how to develop parallel programs using MPI, Pthreads, and OpenMP programming models



Parallel Programming for Modern High Performance Computing Systems

Parallel Programming for Modern High Performance Computing Systems Author Pawel Czarnul
ISBN-10 9781351385794
Release 2018-03-05
Pages 304
Download Link Click Here

In view of the growing presence and popularity of multicore and manycore processors, accelerators, and coprocessors, as well as clusters using such computing devices, the development of efficient parallel applications has become a key challenge to be able to exploit the performance of such systems. This book covers the scope of parallel programming for modern high performance computing systems. It first discusses selected and popular state-of-the-art computing devices and systems available today, These include multicore CPUs, manycore (co)processors, such as Intel Xeon Phi, accelerators, such as GPUs, and clusters, as well as programming models supported on these platforms. It next introduces parallelization through important programming paradigms, such as master-slave, geometric Single Program Multiple Data (SPMD) and divide-and-conquer. The practical and useful elements of the most popular and important APIs for programming parallel HPC systems are discussed, including MPI, OpenMP, Pthreads, CUDA, OpenCL, and OpenACC. It also demonstrates, through selected code listings, how selected APIs can be used to implement important programming paradigms. Furthermore, it shows how the codes can be compiled and executed in a Linux environment. The book also presents hybrid codes that integrate selected APIs for potentially multi-level parallelization and utilization of heterogeneous resources, and it shows how to use modern elements of these APIs. Selected optimization techniques are also included, such as overlapping communication and computations implemented using various APIs. Features: Discusses the popular and currently available computing devices and cluster systems Includes typical paradigms used in parallel programs Explores popular APIs for programming parallel applications Provides code templates that can be used for implementation of paradigms Provides hybrid code examples allowing multi-level parallelization Covers the optimization of parallel programs



Programming Multicore and Many core Computing Systems

Programming Multicore and Many core Computing Systems Author Sabri Pllana
ISBN-10 9781119332008
Release 2017-01-23
Pages 528
Download Link Click Here

Programming multi-core and many-core computing systems Sabri Pllana, Linnaeus University, Sweden Fatos Xhafa, Technical University of Catalonia, Spain Provides state-of-the-art methods for programming multi-core and many-core systems The book comprises a selection of twenty two chapters covering: fundamental techniques and algorithms; programming approaches; methodologies and frameworks; scheduling and management; testing and evaluation methodologies; and case studies for programming multi-core and many-core systems. Program development for multi-core processors, especially for heterogeneous multi-core processors, is significantly more complex than for single-core processors. However, programmers have been traditionally trained for the development of sequential programs, and only a small percentage of them have experience with parallel programming. In the past, only a relatively small group of programmers interested in High Performance Computing (HPC) was concerned with the parallel programming issues, but the situation has changed dramatically with the appearance of multi-core processors on commonly used computing systems. It is expected that with the pervasiveness of multi-core processors, parallel programming will become mainstream. The pervasiveness of multi-core processors affects a large spectrum of systems, from embedded and general-purpose, to high-end computing systems. This book assists programmers in mastering the efficient programming of multi-core systems, which is of paramount importance for the software-intensive industry towards a more effective product-development cycle. Key features: Lessons, challenges, and roadmaps ahead. Contains real world examples and case studies. Helps programmers in mastering the efficient programming of multi-core and many-core systems. The book serves as a reference for a larger audience of practitioners, young researchers and graduate level students. A basic level of programming knowledge is required to use this book.



Parallel Programming

Parallel Programming Author Bertil Schmidt
ISBN-10 9780128044865
Release 2017-11-20
Pages 416
Download Link Click Here

Parallel Programming: Concepts and Practice provides an upper level introduction to parallel programming. In addition to covering general parallelism concepts, this text teaches practical programming skills for both shared memory and distributed memory architectures. The authors’ open-source system for automated code evaluation provides easy access to parallel computing resources, making the book particularly suitable for classroom settings. Covers parallel programming approaches for single computer nodes and HPC clusters: OpenMP, multithreading, SIMD vectorization, MPI, UPC++ Contains numerous practical parallel programming exercises Includes access to an automated code evaluation tool that enables students the opportunity to program in a web browser and receive immediate feedback on the result validity of their program Features an example-based teaching of concept to enhance learning outcomes



Parallel Programming with OpenACC

Parallel Programming with OpenACC Author Rob Farber
ISBN-10 9780124104594
Release 2016-10-14
Pages 326
Download Link Click Here

Parallel Programming with OpenACC is a modern, practical guide to implementing dependable computing systems. The book explains how anyone can use OpenACC to quickly ramp-up application performance using high-level code directives called pragmas. The OpenACC directive-based programming model is designed to provide a simple, yet powerful, approach to accelerators without significant programming effort. Author Rob Farber, working with a team of expert contributors, demonstrates how to turn existing applications into portable GPU accelerated programs that demonstrate immediate speedups. The book also helps users get the most from the latest NVIDIA and AMD GPU plus multicore CPU architectures (and soon for Intel® Xeon PhiTM as well). Downloadable example codes provide hands-on OpenACC experience for common problems in scientific, commercial, big-data, and real-time systems. Topics include writing reusable code, asynchronous capabilities, using libraries, multicore clusters, and much more. Each chapter explains how a specific aspect of OpenACC technology fits, how it works, and the pitfalls to avoid. Throughout, the book demonstrates how the use of simple working examples that can be adapted to solve application needs. Presents the simplest way to leverage GPUs to achieve application speedups Shows how OpenACC works, including working examples that can be adapted for application needs Allows readers to download source code and slides from the book's companion web page



Parallel Computing for Data Science

Parallel Computing for Data Science Author Norman Matloff
ISBN-10 9781466587038
Release 2015-06-04
Pages 328
Download Link Click Here

Parallel Computing for Data Science: With Examples in R, C++ and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic "n observations, p variables" matrix format but also from time series, network graph models, and numerous other structures common in data science. The examples illustrate the range of issues encountered in parallel programming. With the main focus on computation, the book shows how to compute on three types of platforms: multicore systems, clusters, and graphics processing units (GPUs). It also discusses software packages that span more than one type of hardware and can be used from more than one type of programming language. Readers will find that the foundation established in this book will generalize well to other languages, such as Python and Julia.



High Performance Parallelism Pearls Volume One

High Performance Parallelism Pearls Volume One Author James Reinders
ISBN-10 9780128021996
Release 2014-11-04
Pages 600
Download Link Click Here

High Performance Parallelism Pearls shows how to leverage parallelism on processors and coprocessors with the same programming – illustrating the most effective ways to better tap the computational potential of systems with Intel Xeon Phi coprocessors and Intel Xeon processors or other multicore processors. The book includes examples of successful programming efforts, drawn from across industries and domains such as chemistry, engineering, and environmental science. Each chapter in this edited work includes detailed explanations of the programming techniques used, while showing high performance results on both Intel Xeon Phi coprocessors and multicore processors. Learn from dozens of new examples and case studies illustrating "success stories" demonstrating not just the features of these powerful systems, but also how to leverage parallelism across these heterogeneous systems. Promotes consistent standards-based programming, showing in detail how to code for high performance on multicore processors and Intel® Xeon PhiTM Examples from multiple vertical domains illustrating parallel optimizations to modernize real-world codes Source code available for download to facilitate further exploration



Patterns for Parallel Programming

Patterns for Parallel Programming Author Timothy G. Mattson
ISBN-10 0321630033
Release 2004-09-15
Pages 384
Download Link Click Here

The Parallel Programming Guide for Every Software Developer From grids and clusters to next-generation game consoles, parallel computing is going mainstream. Innovations such as Hyper-Threading Technology, HyperTransport Technology, and multicore microprocessors from IBM, Intel, and Sun are accelerating the movement's growth. Only one thing is missing: programmers with the skills to meet the soaring demand for parallel software. That's where Patterns for Parallel Programming comes in. It's the first parallel programming guide written specifically to serve working software developers, not just computer scientists. The authors introduce a complete, highly accessible pattern language that will help any experienced developer "think parallel"-and start writing effective parallel code almost immediately. Instead of formal theory, they deliver proven solutions to the challenges faced by parallel programmers, and pragmatic guidance for using today's parallel APIs in the real world. Coverage includes: Understanding the parallel computing landscape and the challenges faced by parallel developers Finding the concurrency in a software design problem and decomposing it into concurrent tasks Managing the use of data across tasks Creating an algorithm structure that effectively exploits the concurrency you've identified Connecting your algorithmic structures to the APIs needed to implement them Specific software constructs for implementing parallel programs Working with today's leading parallel programming environments: OpenMP, MPI, and Java Patterns have helped thousands of programmers master object-oriented development and other complex programming technologies. With this book, you will learn that they're the best way to master parallel programming too.



Multicore and GPU Programming

Multicore and GPU Programming Author Gerassimos Barlas
ISBN-10 9780124171404
Release 2014-12-16
Pages 698
Download Link Click Here

Multicore and GPU Programming offers broad coverage of the key parallel computing skillsets: multicore CPU programming and manycore "massively parallel" computing. Using threads, OpenMP, MPI, and CUDA, it teaches the design and development of software capable of taking advantage of today’s computing platforms incorporating CPU and GPU hardware and explains how to transition from sequential programming to a parallel computing paradigm. Presenting material refined over more than a decade of teaching parallel computing, author Gerassimos Barlas minimizes the challenge with multiple examples, extensive case studies, and full source code. Using this book, you can develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting multicore machines. Comprehensive coverage of all major multicore programming tools, including threads, OpenMP, MPI, and CUDA Demonstrates parallel programming design patterns and examples of how different tools and paradigms can be integrated for superior performance Particular focus on the emerging area of divisible load theory and its impact on load balancing and distributed systems Download source code, examples, and instructor support materials on the book's companion website



Parallel R

Parallel R Author Q. Ethan McCallum
ISBN-10 9781449320331
Release 2011-10-21
Pages 126
Download Link Click Here

It’s tough to argue with R as a high-quality, cross-platform, open source statistical software product—unless you’re in the business of crunching Big Data. This concise book introduces you to several strategies for using R to analyze large datasets, including three chapters on using R and Hadoop together. You’ll learn the basics of Snow, Multicore, Parallel, Segue, RHIPE, and Hadoop Streaming, including how to find them, how to use them, when they work well, and when they don’t. With these packages, you can overcome R’s single-threaded nature by spreading work across multiple CPUs, or offloading work to multiple machines to address R’s memory barrier. Snow: works well in a traditional cluster environment Multicore: popular for multiprocessor and multicore computers Parallel: part of the upcoming R 2.14.0 release R+Hadoop: provides low-level access to a popular form of cluster computing RHIPE: uses Hadoop’s power with R’s language and interactive shell Segue: lets you use Elastic MapReduce as a backend for lapply-style operations



Parallel Programming in C with MPI and OpenMP

Parallel Programming in C with MPI and OpenMP Author Michael Jay Quinn
ISBN-10 0072822562
Release 2004
Pages 529
Download Link Click Here

This volume gives a high-level overview of parallel architectures, including processor arrays, centralized multi-processors, distributed multi-processors, commercial multi-computers and commodity clusters. A six-chapter tutorial introduces 25 MPI functions by developing parallel programs to solve a series of increasingly difficult problems. Each program is taken from problem description through design and analysis to implementation and benchmarking on an actual commodity cluster, providing the reader with a wealth of examples.



Bioinformatics

Bioinformatics Author Bertil Schmidt
ISBN-10 9781439858363
Release 2011-06-03
Pages 370
Download Link Click Here

New sequencing technologies have broken many experimental barriers to genome scale sequencing, leading to the extraction of huge quantities of sequence data. This expansion of biological databases established the need for new ways to harness and apply the astounding amount of available genomic information and convert it into substantive biological understanding. A complilation of recent approaches from prominent researchers, Bioinformatics: High Performance Parallel Computer Architectures discusses how to take advantage of bioinformatics applications and algorithms on a variety of modern parallel architectures. Two factors continue to drive the increasing use of modern parallel computer architectures to address problems in computational biology and bioinformatics: high-throughput techniques for DNA sequencing and gene expression analysis—which have led to an exponential growth in the amount of digital biological data—and the multi- and many-core revolution within computer architecture. Presenting key information about how to make optimal use of parallel architectures, this book: Describes algorithms and tools including pairwise sequence alignment, multiple sequence alignment, BLAST, motif finding, pattern matching, sequence assembly, hidden Markov models, proteomics, and evolutionary tree reconstruction Addresses GPGPU technology and the associated massively threaded CUDA programming model Reviews FPGA architecture and programming Presents several parallel algorithms for computing alignments on the Cell/BE architecture, including linear-space pairwise alignment, syntenic alignment, and spliced alignment Assesses underlying concepts and advances in orchestrating the phylogenetic likelihood function on parallel computer architectures (ranging from FPGAs upto the IBM BlueGene/L supercomputer) Covers several effective techniques to fully exploit the computing capability of many-core CUDA-enabled GPUs to accelerate protein sequence database searching, multiple sequence alignment, and motif finding Explains a parallel CUDA-based method for correcting sequencing base-pair errors in HTSR data Because the amount of publicly available sequence data is growing faster than single processor core performance speed, modern bioinformatics tools need to take advantage of parallel computer architectures. Now that the era of the many-core processor has begun, it is expected that future mainstream processors will be parallel systems. Beneficial to anyone actively involved in research and applications, this book helps you to get the most out of these tools and create optimal HPC solutions for bioinformatics.



Parallel and Concurrent Programming in Haskell

Parallel and Concurrent Programming in Haskell Author Simon Marlow
ISBN-10 9781449335922
Release 2013-07-12
Pages 322
Download Link Click Here

If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network



High Performance Computing and the Discrete Element Model

High Performance Computing and the Discrete Element Model Author Gao-Feng Zhao
ISBN-10 9780081008096
Release 2015-10-31
Pages 164
Download Link Click Here

This book addresses the high performance computing of the Discrete Element Model (DEM). It is a comprehensive presentation of parallel implementation of the DEM on three popular parallel computing platforms; the multi-core PC, the GPU computer, and the cluster supercomputer. Featuring accompanying MatLab source this book helps you implement the DEM model for use with high performing technology, for particular implementation of the dynamic failure of solids, granular flow and stress wave propagation through solids. Features both Pre-processor, Solver, and Post-processor for the DEM Covers the parallel implementation of DEM on the cluster, multi-core PC, GPU PC Full of examples of dynamic fracturing, granular flow and stress wave propagation using high performance DEM Source codes and data files available for hands-on practice