Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

PEM Fuel Cell Modeling and Simulation Using Matlab

PEM Fuel Cell Modeling and Simulation Using Matlab Author Colleen Spiegel
ISBN-10 0080559018
Release 2011-08-29
Pages 456
Download Link Click Here

Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money. Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design advice and MATLAB and FEMLAB codes for Fuel Cell types such as: polymer electrolyte, direct methanol and solid oxide fuel cells. This book also includes types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. *Modeling and design validation techniques *Covers most types of Fuel Cell including SOFC *MATLAB and FEMLAB modelling codes *Translates basic phenomena into mathematical equations



PEM Fuel Cell Modeling and Simulation Using Matlab

PEM Fuel Cell Modeling and Simulation Using Matlab Author Colleen Spiegel
ISBN-10 UCSD:31822035338060
Release 2008
Pages 443
Download Link Click Here

Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money. Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design advice and MATLAB and FEMLAB codes for Fuel Cell types such as: polymer electrolyte, direct methanol and solid oxide fuel cells. This book also includes types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. *Modeling and design validation techniques *Covers most types of Fuel Cell including SOFC *MATLAB and FEMLAB modelling codes *Translates basic phenomena into mathematical equations



PEM Fuel Cell Modelling and Simulation using MATLAB

PEM Fuel Cell Modelling and Simulation using MATLAB Author Colleen Spiegel
ISBN-10 9780128094822
Release 2018-01-01
Pages 520
Download Link Click Here

The second edition of PEM Fuel Cell Modeling and Simulation provides design engineers and researchers with a valuable and completely updated tool for understanding and overcoming barriers to designing and building fuel cells and fuel cell systems. Starting from the basic concept of a fuel cell, this book presents tools for creating new designs and optimizing their performance. It provides information on how to test components and verify designs in the development phase, saving both time and money. Also included are design and modelling tips for fuel cell components such as exchange structure, catalyst layers, gas diffusion and fuel distribution structures, as well as for fuel cell stacks and fuel cell plants. MATLAB® and FEMLAB codes for polymer electrolyte, direct methanol and solid oxide fuel cells are made available, covering types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. Chapters have been updated and/or expanded in this new edition. New sections have been added to bring more details on topics like degradation in the proton exchange membrane and the catalyst layer, effect of compression of the gas diffusion layer, hydrogen and oxygen crossover modeling, transient behavior modeling, fuel cell modeling assumptions and limitations, fuel cell systems design for vehicles and buildings. It is an indispensable reference for all those involved in fuel cell modeling, especially engineers involved in planning and simulating fuel cell systems or fuel cell integration into energy systems, energy researchers interested in modeling all aspects of fuel cells, from individual components to entire systems, and graduate students entering this field. This new edition has been updated to include the most current knowledge in the field, and its content has been expanded to cover several new topics, such as degradation in the proton exchange membrane and the catalyst layer, effect of compression of the gas diffusion layer, hydrogen and oxygen crossover modeling, transient behavior modeling, fuel cell modeling assumptions and limitations, fuel cell systems design for vehicles and buildings Includes MATLAB® and FEMLAB modelling codes applicable for polymer electrolyte, direct methanol and solid oxide fuel cells Translates basic phenomena into mathematical equations



Modeling and Control of Fuel Cells

Modeling and Control of Fuel Cells Author M. H. Nehrir
ISBN-10 9780470233283
Release 2009-03-11
Pages 296
Download Link Click Here

"The emerging fuel cell (FC) technology is growing rapidly in its applications from small-scale portable electronics to large-scale power generation. This book gives students, engineers, and scientists a solid understanding of the FC dynamic modeling and controller design to adapt FCs to particular applications in distributed power generation." "The book begins with a fascinating introduction to the subject, including a brief history of the U.S. electric utility formation and restructuring. Next, it provides coverage of power deregulation and distributed generation (DG), DG types, fuel cell DGs, and the hydrogen economy. Modeling and Control of Fuel Cells is an excellent reference book for students and professionals in electrical, chemical, and mechanical engineering and scientists working in the FC area."--BOOK JACKET.



PEM Fuel Cells with Bio Ethanol Processor Systems

PEM Fuel Cells with Bio Ethanol Processor Systems Author Marta S. Basualdo
ISBN-10 1849961840
Release 2011-10-30
Pages 462
Download Link Click Here

An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aided engineering software tools that can be used to evaluate the dynamic performance of the overall plant. PEM Fuel Cells with Bio-Ethanol Processor Systems is intended for use by researchers and advanced students on chemical, electrical-electronic and mechanical engineering courses in which dynamics and control are incorporated with the traditional steady-state coverage of flowsheet synthesis, engineering economics and optimization.



Fuel Cells

Fuel Cells Author Bei Gou
ISBN-10 1420071629
Release 2009-08-06
Pages 248
Download Link Click Here

Fuel Cells: Modeling, Control, and Applications describes advanced research results on modeling and control designs for fuel cells and their hybrid energy systems. Filled with simulation examples and test results, it provides detailed discussions on fuel cell modeling, analysis, and nonlinear control. The book begins with an introduction to fuel cells and fuel cell power systems as well as the fundamentals of fuel cell systems and their components. It then presents the linear and nonlinear modeling of fuel cell dynamics, before discussing typical approaches of linear and nonlinear modeling and control design methods for fuel cells. The authors also explore the Simulink implementation of fuel cells, including the modeling of PEM fuel cells and control designs. They cover the applications of fuel cells in vehicles, utility power systems, stand-alone systems, and hybrid renewable energy systems. The book concludes with the modeling and analysis of hybrid renewable energy systems, which integrate fuel cells, wind power, and solar power. Mathematical preliminaries on linear and nonlinear control are provided in an appendix. With the need for alternative power well established, we are seeing unprecedented research in fuel cell technology. Written by scientists directly involved with the research, this book presents approaches and achievements in the linear and nonlinear modeling and control design of PEM fuel cells.



Designing and Building Fuel Cells

Designing and Building Fuel Cells Author Colleen Spiegel
ISBN-10 007151063X
Release 2007-05-22
Pages 434
Download Link Click Here

Acquire an All-in-One Toolkit for Expertly Designing, Modeling, and Constructing High-Performance Fuel Cells Designing and Building Fuel Cells equips you with a hands-on guide for the design, modeling, and construction of fuel cells that perform as well or better than some of the best fuel cells on the market today. Filled with over 120 illustrations and schematics of fuel cells and components, this “one-stop” guide covers fuel cell applications...fuels and the hydrogen economy...fuel cell chemistry, thermodynamics, and electrochemistry...fuel cell modeling, materials, and system design...fuel types, delivery, and processing...fuel cell operating conditions...fuel cell characterization...and much more. Authoritative and practical, Designing and Building Fuel Cells features: Complete information on stack design The latest fuel cell modeling techniques Guidance on cutting-edge materials and components Expert accounts of fuel cell types, processing, and optimization A step-by-step example for constructing a fuel cell Inside This State-of-the-Art Fuel Cell Sourcebook Introduction • Fuel Cell Applications • Fuel Cells and the Hydrogen Economy • Basic Fuel Cell Chemistry and Thermodynamics • Fuel Cell Electrochemistry • Fuel Cell Charge Transport • Fuel Cell Mass Transport • Fuel Cell Heat Transport • Fuel Cell Modeling • Fuel Cell Materials • Fuel Cell Stack Components and Materials • Fuel Cell Stack Design • Fuel Cell System Design • Fuel Types, Delivery, and Processing • Fuel Cell Operating Conditions • Fuel Cell Characterization



Fuel Cells

Fuel Cells Author Shripad T. Revankar
ISBN-10 9781482235418
Release 2016-04-19
Pages 748
Download Link Click Here

Fuel Cells: Principles, Design, and Analysis considers the latest advances in fuel cell system development and deployment, and was written with engineering and science students in mind. This book provides readers with the fundamentals of fuel cell operation and design, and incorporates techniques and methods designed to analyze different fuel cell systems. It builds on three main themes: basic principles, analysis, and design. The section on basic principles contains background information on fuel cells, including fundamental principles such as electrochemistry, thermodynamics, and kinetics of fuel cell reactions as well as mass and heat transfer in fuel cells. The section on design explores important characteristics associated with various fuel cell components, electrodes, electrocatalysts, and electrolytes, while the section on analysis examines phenomena characterization and modeling both at the component and system levels. Includes objectives and a summary in each chapter Presents examples and problems demonstrating theory/principle applications Provides case studies on fuel cell analysis Contains mathematical methods including numerical methods and MATLAB® Simulink® techniques Offers references and material for further reading Fuel Cells: Principles, Design, and Analysis presents the basic principles, examples, and models essential in the design and optimization of fuel cell systems. Based on more than ten years of the authors’ teaching experience, this text is an ideal resource for junior- to senior-level undergraduate students and for graduate students pursuing advanced fuel cell research and study.



Control of Fuel Cell Power Systems

Control of Fuel Cell Power Systems Author Jay T. Pukrushpan
ISBN-10 1852338164
Release 2004-09-16
Pages 161
Download Link Click Here

The problem of greenhouse gas (particularly carbon dioxide) release during power generation in fixed and mobile systems is widely acknowledged. Fuel cells are electrochemical devices offering clean and efficient energy production by the direct conversion of gaseous fuel into electricity. As such, they are under active study for commercial stationary power generation, residential applications and in transportation. The control of fuel cell systems under a variety of environmental conditions and over a wide operating range is a crucial factor in making them viable for extensive use in every-day technology. In Control of Fuel Cell Power Systems the application of fuel cells in automotive powertrains is emphasized because of the significance of the contribution to global CO2 emissions made by ground vehicle propulsion and because of the challenge presented by the accompanying control problems. The authors’ comprehensive control-oriented approach provides: • An overview of the underlying physical principles and the main control objectives and difficulties associated with the implementation of fuel cell systems. • System-level dynamic models derived from the physical principles of the processes involved. • Formulation, in-depth analysis and detailed control design for two critical control problems, namely, the control of the cathode oxygen supply for a high-pressure direct hydrogen fuel cell system and control of the anode hydrogen supply from a natural gas fuel processor system. • Multivariable controllers that attenuate restraints resulting from lack of sensor fidelity or actuator authority. • Real-time observers for stack variables that confer redundancy in fault detection processes. • Examples of the assistance of control analysis in fuel cell redesign and performance improvement. • Downloadable SIMULINK® model of a fuel cell for immediate use supplemented by sample MATLAB® files with which to run it and reproduce some of the book plots. Primarily intended for researchers and students with a control background looking to expand their knowledge of fuel cell technology, Control of Fuel Cell Power Systems will also appeal to practicing fuel cell engineers through the simplicity of its models and the application of control algorithms in concrete case studies. The thorough coverage of control design will be of benefit to scientists dealing with the electrochemical, materials and fluid-dynamic aspects of fuel cells. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.



Electric Vehicle Technology Explained

Electric Vehicle Technology Explained Author James Larminie
ISBN-10 0470851635
Release 2003-12-08
Pages 296
Download Link Click Here

While the classic battery electric car continues to make only a small impact on the automobile market, other types of electric vehicle, especially hybrids, have made significant and promising improvements. Moreover, small battery electric vehicles such as bicycles and mobility aids are also developing well. Presenting more than 160 diagrams and pictures, this book explains the science and technology behind these important developments, and also introduces the issues that underpin the design and performance modelling of electric vehicles. Electric Vehicle Technology Explained: Encompasses a full range of electric vehicles: bicycles, mobility aids, delivery vehicles and buses – not just cars. Covers all the basic technology relating to electric road vehicles – batteries, super capacitors, flywheels, fuel cells, electric motors and their controllers, and system design. Considers the environmental benefits and disadvantages of electric vehicles and their component devices. Includes case studies of a range of batteries, hybrids and fuel cell powered vehicles, from bicycles to buses. Offers many MATLAB® examples explaining the design of appropriate computer prediction models. Professionals, researchers and engineers in the electric vehicle industry as well as advanced students in electrical and mechanical engineering will benefit from this comprehensive coverage of electric vehicle technology.



Fuel Cells

Fuel Cells Author Bei Gou
ISBN-10 9781498733007
Release 2016-08-05
Pages 411
Download Link Click Here

This book describes advanced research results on Modeling and Control designs for Fuel Cells and their hybrid energy systems. Filled with simulation examples and test results, it provides detailed discussions on Fuel Cell Modeling, Analysis, and Nonlinear control. Beginning with an introduction to Fuel Cells and Fuel Cell Power Systems, as well as the fundamentals of Fuel Cell Systems and their components, it then presents the Linear and Nonlinear modeling of Fuel Cell Dynamics. Typical approaches of Linear and Nonlinear Modeling and Control Design methods for Fuel Cells are also discussed. The authors explore the Simulink implementation of Fuel Cells, including the modeling of PEM Fuel Cells and Control Designs. They cover the applications of Fuel cells in vehicles, utility power systems, and stand-alone systems, which integrate Fuel Cells, Wind Power, and Solar Power. Mathematical preliminaries on Linear and Nonlinear Control are provided in an appendix.



Vehicle Power Management

Vehicle Power Management Author Xi Zhang
ISBN-10 0857297368
Release 2011-08-12
Pages 346
Download Link Click Here

Vehicle Power Management addresses the challenge of improving vehicle fuel economy and reducing emissions without sacrificing vehicle performance, reliability and durability. It opens with the definition, objectives, and current research issues of vehicle power management, before moving on to a detailed introduction to the modeling of vehicle devices and components involved in the vehicle power management system, which has been proven to be the most cost-effective and efficient method for initial-phase vehicle research and design. Specific vehicle power management algorithms and strategies, including the analytical approach, optimal control, intelligent system approaches and wavelet technology, are derived and analyzed for realistic applications. Vehicle Power Management also gives a detailed description of several key technologies in the design phases of hybrid electric vehicles containing battery management systems, component optimization, hardware-in-the-loop and software-in-the-loop. Vehicle Power Management provides graduate and upper level undergraduate students, engineers, and researchers in both academia and the automotive industry, with a clear understanding of the concepts, methodologies, and prospects of vehicle power management.



Electric Powertrain

Electric Powertrain Author John G. Hayes
ISBN-10 9781119063674
Release 2017-11-13
Pages 560
Download Link Click Here

The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA’s Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. • Introduces and holistically integrates the key EV powertrain technologies. • Provides a comprehensive overview of existing and emerging automotive solutions. • Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. • Presents many examples of powertrain technologies from leading manufacturers. • Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. • Investigates the environmental motivating factors and impacts of electromobility. • Presents a structured university teaching stream from introductory undergraduate to postgraduate. • Includes real-world problems and assignments of use to design engineers, researchers, and students alike. • Features a companion website with numerous references, problems, solutions, and practical assignments. • Includes introductory material throughout the book for the general scientific reader. • Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience.



Smart Power Grids 2011

Smart Power Grids 2011 Author Ali Keyhani
ISBN-10 9783642215780
Release 2012-01-12
Pages 696
Download Link Click Here

Electric power systems are experiencing significant changes at the worldwide scale in order to become cleaner, smarter, and more reliable. This edited book examines a wide range of topics related to these changes, which are primarily caused by the introduction of information technologies, renewable energy penetration, digitalized equipment, new operational strategies, and so forth. The emphasis will be put on the modeling and control of smart grid systems. The book addresses research topics such as high efficiency transforrmers, wind turbines and generators, fuel cells, or high speed turbines and generators.



Fuel Cell Systems Explained

Fuel Cell Systems Explained Author Andrew L. Dicks
ISBN-10 9781118706978
Release 2018-03-14
Pages 488
Download Link Click Here

Since publication of the first edition of Fuel Cell Systems Explained, three compelling drivers have supported the continuing development of fuel cell technology. These are: the need to maintain energy security in an energy-hungry world, the desire to move towards zero-emission vehicles and power plants, and the mitigation of climate change by lowering of CO2 emissions. New fuel cell materials, enhanced stack performance and increased lifetimes are leading to the emergence of the first truly commercial systems in applications that range from fork-lift trucks to power sources for mobile phone towers. Leading vehicle manufacturers have embraced the use of electric drive-trains and now see hydrogen fuel cells complementing advanced battery technology in zero-emission vehicles. After many decades of laboratory development, a global but fragile fuel cell industry is bringing the first commercial products to market. This thoroughly revised edition includes several new sections devoted to, for example, fuel cell characterisation, improved materials for low-temperature hydrogen and liquid-fuelled systems, and real-world technology implementation. Assuming no prior knowledge of fuel cell technology, the third edition comprehensively brings together all of the key topics encompassed in this diverse field. Practitioners, researchers and students in electrical, power, chemical and automotive engineering will continue to benefit from this essential guide to the principles, design and implementation of fuel cell systems.



Encyclopedia of Electrochemical Power Sources

Encyclopedia of Electrochemical Power Sources Author Jürgen Garche
ISBN-10 9780444527455
Release 2013-05-20
Pages 4538
Download Link Click Here

The Encyclopedia of Electrochemical Power Sources is a truly interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With a focus on the environmental and economic impact of electrochemical power sources, this five-volume work consolidates coverage of the field and serves as an entry point to the literature for professionals and students alike. Covers the main types of power sources, including their operating principles, systems, materials, and applications Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers Incorporates nearly 350 articles, with timely coverage of such topics as environmental and sustainability considerations



ICREGA 14 Renewable Energy Generation and Applications

ICREGA   14   Renewable Energy  Generation and Applications Author Mohammad O. Hamdan
ISBN-10 9783319057088
Release 2014-07-01
Pages 713
Download Link Click Here

This book collects the edited and reviewed contributions presented in the 3rd International Conference on Renewable Energy: Generation and Applications” ICREGA’14, organized by the UAE University in Al-Ain. This conference aims to disseminate knowledge on methods, policies and technologies related to renewable energy and it acknowledges the leadership of the UAE which committed to a 7% renewable energy target by 2020. The demands and developments in renewable energy generations and applications are rapidly growing and are facing many challenges on different levels such as basic science, engineering system design, energy policies and sustainable developments. This edition presents new contributions related to recent renewable energy case studies, developments in biofuel, energy storage, solar and wind energy, integrated systems and sustainable power production. In the spirit of the ICREGA’14, the volume has been produced after the conference so that the authors had the possibility to incorporate comments and discussions raised during the meeting. The contributions have been grouped in the following topics: - Efficient Energy Utilization - Electrical Energy Market, Management and Economics - Energy Storage Systems - Environmental Issues - Fuel Cells Systems - Green Buildings - Intelligent Energy/Power Transmission and Distribution - Solar Photovoltaic and Thermal Energy - Wind Energy Systems.