Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

The Prime Numbers and Their Distribution

The Prime Numbers and Their Distribution Author Gerald Tenenbaum
ISBN-10 9780821816479
Release 2000
Pages 115
Download Link Click Here

One notable new direction this century in the study of primes has been the influx of ideas from probability. The goal of this book is to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. The book opens with some classic topics of number theory. It ends with a discussion of some of the outstanding conjectures in number theory. In between are an excellent chapter on the stochastic properties of primes and a walk through an elementary proof of the Prime Number Theorem. This book is suitable for anyone who has had a little number theory and some advanced calculus involving estimates. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians.

The Distribution of Prime Numbers

The Distribution of Prime Numbers Author Albert Edward Ingham
ISBN-10 0521397898
Release 1932
Pages 114
Download Link Click Here

Originally published in 1934, this volume presents the theory of the distribution of the prime numbers in the series of natural numbers. Despite being long out of print, it remains unsurpassed as an introduction to the field.

Using the Mathematics Literature

Using the Mathematics Literature Author Kristine K. Fowler
ISBN-10 0824750357
Release 2004-05-25
Pages 475
Download Link Click Here

This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathematics and details methods of access to primary literature sources of new research, applications, results, and techniques. Using the Mathematics Literature is the most comprehensive and up-to-date resource on mathematics literature in both print and electronic formats, presenting time-saving strategies for retrieval of the latest information.

Types for Proofs and Programs

Types for Proofs and Programs Author Stefano Berardi
ISBN-10 9783642024443
Release 2009-06-07
Pages 323
Download Link Click Here

These proceedings contain a selection of refereed papers presented at or - lated to the Annual Workshop of the TYPES project (EU coordination action 510996), which was held during March 26–29, 2008 in Turin, Italy. The topic of this workshop, and of all previous workshops of the same project, was f- mal reasoning and computer programming based on type theory: languages and computerized tools for reasoning, and applications in several domains such as analysis of programming languages, certi?ed software, mobile code, formali- tion of mathematics, mathematics education. The workshop was attended by more than 100 researchers and included more than 40 presentations. We also had three invited lectures, from A. Asperti (University of Bologna), G. Dowek (LIX, Ecole polytechnique, France) and J. W. Klop (Vrije Universiteit, A- terdam, The Netherlands). From 27 submitted papers, 19 were selected after a reviewing process. Each submitted paper was reviewed by three referees; the ?nal decisions were made by the editors. This workshop is the last of a series of meetings of the TYPES working group funded by the European Union (IST project 29001, ESPRIT Working Group 21900, ESPRIT BRA 6435).

A Course in Analytic Number Theory

A Course in Analytic Number Theory Author Marius Overholt
ISBN-10 9781470417062
Release 2014-12-30
Pages 371
Download Link Click Here

This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.

Not Always Buried Deep

Not Always Buried Deep Author Paul Pollack
ISBN-10 9780821848807
Release 2009-10-14
Pages 303
Download Link Click Here

Number theory is one of the few areas of mathematics where problems of substantial interest can be fully described to someone with minimal mathematical background. Solving such problems sometimes requires difficult and deep methods. But this is not a universal phenomenon; many engaging problems can be successfully attacked with little more than one's mathematical bare hands. In this case one says that the problem can be solved in an elementary way. Such elementary methods and the problems to which they apply are the subject of this book. Not Always Buried Deep is designed to be read and enjoyed by those who wish to explore elementary methods in modern number theory. The heart of the book is a thorough introduction to elementary prime number theory, including Dirichlet's theorem on primes in arithmetic progressions, the Brun sieve, and the Erdos-Selberg proof of the prime number theorem. Rather than trying to present a comprehensive treatise, Pollack focuses on topics that are particularly attractive and accessible. Other topics covered include Gauss's theory of cyclotomy and its applications to rational reciprocity laws, Hilbert's solution to Waring's problem, and modern work on perfect numbers. The nature of the material means that little is required in terms of prerequisites: The reader is expected to have prior familiarity with number theory at the level of an undergraduate course and a first course in modern algebra (covering groups, rings, and fields). The exposition is complemented by over 200 exercises and 400 references.

Mathematics of Quantum Computation and Quantum Technology

Mathematics of Quantum Computation and Quantum Technology Author Louis Kauffman
ISBN-10 1584889004
Release 2007-09-19
Pages 624
Download Link Click Here

Research and development in the pioneering field of quantum computing involve just about every facet of science and engineering, including the significant areas of mathematics and physics. Based on the firm understanding that mathematics and physics are equal partners in the continuing study of quantum science, Mathematics of Quantum Computation and Quantum Technology explores the rapid mathematical advancements made in this field in recent years. Novel Viewpoints on Numerous Aspects of Quantum Computing and Technology Edited by a well-respected team of experts, this volume compiles contributions from specialists across various disciplines. It contains four main parts, beginning with topics in quantum computing that include quantum algorithms and hidden subgroups, quantum search, algorithmic complexity, and quantum simulation. The next section covers quantum technology, such as mathematical tools, quantum wave functions, superconducting quantum computing interference devices (SQUIDs), and optical quantum computing. The section on quantum information deals with error correction, cryptography, entanglement, and communication. The final part explores topological quantum computation, knot theory, category algebra, and logic. The Tools You Need to Tackle the Next Generation of Quantum Technology This book facilitates both the construction of a common quantum language and the development of interdisciplinary quantum techniques, which will aid efforts in the pursuit of the ultimate goal-a "real" scalable quantum computer.

Introduction to Analytic and Probabilistic Number Theory

Introduction to Analytic and Probabilistic Number Theory Author Gérald Tenenbaum
ISBN-10 9780821898543
Release 2015-07-16
Pages 629
Download Link Click Here

This book provides a self contained, thorough introduction to the analytic and probabilistic methods of number theory. The prerequisites being reduced to classical contents of undergraduate courses, it offers to students and young researchers a systematic and consistent account on the subject. It is also a convenient tool for professional mathematicians, who may use it for basic references concerning many fundamental topics. Deliberately placing the methods before the results, the book will be of use beyond the particular material addressed directly. Each chapter is complemented with bibliographic notes, useful for descriptions of alternative viewpoints, and detailed exercises, often leading to research problems. This third edition of a text that has become classical offers a renewed and considerably enhanced content, being expanded by more than 50 percent. Important new developments are included, along with original points of view on many essential branches of arithmetic and an accurate perspective on up-to-date bibliography. The author has made important contributions to number theory and his mastery of the material is reflected in the exposition, which is lucid, elegant, and accurate. --Mathematical Reviews

Higher Arithmetic

Higher Arithmetic Author Harold M. Edwards
ISBN-10 0821844393
Release 2008
Pages 210
Download Link Click Here

Although number theorists have sometimes shunned and even disparaged computation in the past, today's applications of number theory to cryptography and computer security demand vast arithmetical computations. These demands have shifted the focus of studies in number theory and have changed attitudes toward computation itself. The important new applications have attracted a great many students to number theory, but the best reason for studying the subject remains what it was when Gauss published his classic Disquisitiones Arithmeticae in 1801: Number theory is the equal of Euclidean geometry--some would say it is superior to Euclidean geometry--as a model of pure, logical, deductive thinking. An arithmetical computation, after all, is the purest form of deductive argument. Higher Arithmetic explains number theory in a way that gives deductive reasoning, including algorithms and computations, the central role. Hands-on experience with the application of algorithms to computational examples enables students to master the fundamental ideas of basic number theory. This is a worthwhile goal for any student of mathematics and an essential one for students interested in the modern applications of number theory. Harold M. Edwards is Emeritus Professor of Mathematics at New York University. His previous books are Advanced Calculus (1969, 1980, 1993), Riemann's Zeta Function (1974, 2001), Fermat's Last Theorem (1977), Galois Theory (1984), Divisor Theory (1990), Linear Algebra (1995), and Essays in Constructive Mathematics (2005). For his masterly mathematical exposition he was awarded a Steele Prize as well as a Whiteman Prize by the American Mathematical Society.

Elementary Number Theory Cryptography and Codes

Elementary Number Theory  Cryptography and Codes Author M. Welleda Baldoni
ISBN-10 3540692002
Release 2008-11-28
Pages 522
Download Link Click Here

In this volume one finds basic techniques from algebra and number theory (e.g. congruences, unique factorization domains, finite fields, quadratic residues, primality tests, continued fractions, etc.) which in recent years have proven to be extremely useful for applications to cryptography and coding theory. Both cryptography and codes have crucial applications in our daily lives, and they are described here, while the complexity problems that arise in implementing the related numerical algorithms are also taken into due account. Cryptography has been developed in great detail, both in its classical and more recent aspects. In particular public key cryptography is extensively discussed, the use of algebraic geometry, specifically of elliptic curves over finite fields, is illustrated, and a final chapter is devoted to quantum cryptography, which is the new frontier of the field. Coding theory is not discussed in full; however a chapter, sufficient for a good introduction to the subject, has been devoted to linear codes. Each chapter ends with several complements and with an extensive list of exercises, the solutions to most of which are included in the last chapter. Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.

Primality Testing for Beginners

Primality Testing for Beginners Author Lasse Rempe-Gillen
ISBN-10 9780821898833
Release 2013-12-11
Pages 240
Download Link Click Here

How can you tell whether a number is prime? What if the number has hundreds or thousands of digits? This question may seem abstract or irrelevant, but in fact, primality tests are performed every time we make a secure online transaction. In 2002, Agrawal, Kayal, and Saxena answered a long-standing open question in this context by presenting a deterministic test (the AKS algorithm) with polynomial running time that checks whether a number is prime or not. What is more, their methods are essentially elementary, providing us with a unique opportunity to give a complete explanation of a current mathematical breakthrough to a wide audience. Rempe-Gillen and Waldecker introduce the aspects of number theory, algorithm theory, and cryptography that are relevant for the AKS algorithm and explain in detail why and how this test works. This book is specifically designed to make the reader familiar with the background that is necessary to appreciate the AKS algorithm and begins at a level that is suitable for secondary school students, teachers, and interested amateurs. Throughout the book, the reader becomes involved in the topic by means of numerous exercises.

Elliptic Curves Modular Forms and Their L functions

Elliptic Curves  Modular Forms  and Their L functions Author Alvaro Lozano-Robledo
ISBN-10 9780821852422
Release 2011
Pages 195
Download Link Click Here

Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.

Ramsey Theory on the Integers

Ramsey Theory on the Integers Author Bruce M. Landman
ISBN-10 9780821898673
Release 2014-11-10
Pages 384
Download Link Click Here

Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems. For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics are: rainbow Ramsey theory, an "inequality" version of Schur's theorem, monochromatic solutions of recurrence relations, Ramsey results involving both sums and products, monochromatic sets avoiding certain differences, Ramsey properties for polynomial progressions, generalizations of the Erdős-Ginzberg-Ziv theorem, and the number of arithmetic progressions under arbitrary colorings. Many new results and proofs have been added, most of which were not known when the first edition was published. Furthermore, the book's tables, exercises, lists of open research problems, and bibliography have all been significantly updated. This innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subject. This breakthrough book will engage students, teachers, and researchers alike.

The Joy of Factoring

The Joy of Factoring Author Samuel S. Wagstaff (Jr.)
ISBN-10 9781470410483
Release 2013-10-24
Pages 293
Download Link Click Here

This book is about the theory and practice of integer factorisation presented in a historic perspective. It describes about twenty algorithms for factoring and a dozen other number theory algorithms that support the factoring algorithms. Most algorithms are described both in words and in pseudocode to satisfy both number theorists and computer scientists. Each of the ten chapters begins with a concise summary of its contents. The book starts with a general explanation of why factoring integers is important. The next two chapters present number theory results that are relevant to factoring. Further on there is a chapter discussing, in particular, mechanical and electronic devices for factoring, as well as factoring using quantum physics and DNA molecules. Another chapter applies factoring to breaking certain cryptographic algorithms. Yet another chapter is devoted to practical vs. theoretical aspects of factoring. The book contains more than 100 examples illustrating various algorithms and theorems. It also contains more than 100 interesting exercises to test the reader's understanding. Hints or answers are given for about a third of the exercises. The book concludes with a dozen suggestions of possible new methods for factoring integers. This book is written for readers who want to learn more about the best methods of factoring integers, many reasons for factoring, and some history of this fascinating subject. It can be read by anyone who has taken a first course in number theory.


Asymptopia Author Joel Spencer
ISBN-10 9781470409043
Release 2014-06-24
Pages 189
Download Link Click Here

Asymptotics in one form or another are part of the landscape for every mathematician. The objective of this book is to present the ideas of how to approach asymptotic problems that arise in discrete mathematics, analysis of algorithms, and number theory. A broad range of topics is covered, including distribution of prime integers, Erdős Magic, random graphs, Ramsey numbers, and asymptotic geometry. The author is a disciple of Paul Erdős, who taught him about Asymptopia. Primes less than , graphs with vertices, random walks of steps--Erdős was fascinated by the limiting behavior as the variables approached, but never reached, infinity. Asymptotics is very much an art. The various functions , , , , all have distinct personalities. Erdős knew these functions as personal friends. It is the author's hope that these insights may be passed on, that the reader may similarly feel which function has the right temperament for a given task. This book is aimed at strong undergraduates, though it is also suitable for particularly good high school students or for graduates wanting to learn some basic techniques. Asymptopia is a beautiful world. Enjoy!

Bulletin new Series of the American Mathematical Society

Bulletin  new Series  of the American Mathematical Society Author
ISBN-10 UOM:39015072629788
Release 2008
Download Link Click Here

Bulletin new Series of the American Mathematical Society has been writing in one form or another for most of life. You can find so many inspiration from Bulletin new Series of the American Mathematical Society also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Bulletin new Series of the American Mathematical Society book for free.

Exploring the Number Jungle

Exploring the Number Jungle Author Edward B. Burger
ISBN-10 9780821826409
Release 2000
Pages 151
Download Link Click Here

Welcome to diophantine analysis--an area of number theory in which we attempt to discover hidden treasures and truths within the jungle of numbers by exploring rational numbers. Diophantine analysis comprises two different but interconnected domains--diophantine approximation and diophantine equations. This highly readable book brings to life the fundamental ideas and theorems from diophantine approximation, geometry of numbers, diophantine geometry and $p$-adic analysis. Through an engaging style, readers participate in a journey through these areas of number theory. Each mathematical theme is presented in a self-contained manner and is motivated by very basic notions. The reader becomes an active participant in the explorations, as each module includes a sequence of numbered questions to be answered and statements to be verified. Many hints and remarks are provided to be freely used and enjoyed. Each module then closes with a Big Picture Question that invites the reader to step back from all the technical details and take a panoramic view of how the ideas at hand fit into the larger mathematical landscape. This book enlists the reader to build intuition, develop ideas and prove results in a very user-friendly and enjoyable environment. Little background is required and a familiarity with number theory is not expected. All that is needed for most of the material is an understanding of calculus and basic linear algebra together with the desire and ability to prove theorems. The minimal background requirement combined with the author's fresh approach and engaging style make this book enjoyable and accessible to second-year undergraduates, and even advanced high school students. The author's refreshing new spin on more traditional discovery approaches makes this book appealing to any mathematician and/or fan of number theory.