Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Primer of Applied Regression Analysis of Variance Third Edition

Primer of Applied Regression   Analysis of Variance  Third Edition Author Stanton A. Glantz
ISBN-10 9780071822442
Release 2016-02-22
Pages 992
Download Link Click Here

A textbook on the use of advanced statistical methods in healthcare sciences Primer of Applied Regression & Analysis of Variance is a textbook especially created for medical, public health, and social and environmental science students who need applied (not theoretical) training in the use of statistical methods. The book has been acclaimed for its user-friendly style that makes complicated material understandable to readers who do not have an extensive math background. The text is packed with learning aids that include chapter-ending summaries and end-of-chapter problems that quickly assess mastery of the material. Examples from biological and health sciences are included to clarify and illustrate key points. The techniques discussed apply to a wide range of disciplines, including social and behavioral science as well as health and life sciences. Typical courses that would use this text include those that cover multiple linear regression and ANOVA. Four completely new chapters Completely updated software information and examples



Applied regression analysis

Applied regression analysis Author Norman Richard Draper
ISBN-10 UOM:39076002415656
Release 1998-04-23
Pages 706
Download Link Click Here

An outstanding introduction to the fundamentals of regression analysis-updated and expanded The methods of regression analysis are the most widely used statistical tools for discovering the relationships among variables. This classic text, with its emphasis on clear, thorough presentation of concepts and applications, offers a complete, easily accessible introduction to the fundamentals of regression analysis. Assuming only a basic knowledge of elementary statistics, Applied Regression Analysis, Third Edition focuses on the fitting and checking of both linear and nonlinear regression models, using small and large data sets, with pocket calculators or computers. This Third Edition features separate chapters on multicollinearity, generalized linear models, mixture ingredients, geometry of regression, robust regression, and resampling procedures. Extensive support materials include sets of carefully designed exercises with full or partial solutions and a series of true/false questions with answers. All data sets used in both the text and the exercises can be found on the companion disk at the back of the book. For analysts, researchers, and students in university, industrial, and government courses on regression, this text is an excellent introduction to the subject and an efficient means of learning how to use a valuable analytical tool. It will also prove an invaluable reference resource for applied scientists and statisticians.



Regression ANOVA and the General Linear Model

Regression  ANOVA  and the General Linear Model Author Peter Vik
ISBN-10 9781483316017
Release 2013-01-14
Pages 344
Download Link Click Here

Peter Vik's Regression, ANOVA, and the General Linear Model: A Statistics Primer demonstrates basic statistical concepts from two different perspectives, giving the reader a conceptual understanding of how to interpret statistics and their use. The two perspectives are (1) a traditional focus on the t-test, correlation, and ANOVA, and (2) a model-comparison approach using General Linear Models (GLM). This book juxtaposes the two approaches by presenting a traditional approach in one chapter, followed by the same analysis demonstrated using GLM. By so doing, students will acquire a theoretical and conceptual appreciation for data analysis as well as an applied practical understanding as to how these two approaches are alike.



Applied Regression Analysis and Other Multivariable Methods

Applied Regression Analysis and Other Multivariable Methods Author David Kleinbaum
ISBN-10 9781285051086
Release 2013-08-30
Pages 1072
Download Link Click Here

This bestseller will help you learn regression-analysis methods that you can apply to real-life problems. It highlights the role of the computer in contemporary statistics with numerous printouts and exercises that you can solve using the computer. The authors continue to emphasize model development, the intuitive logic and assumptions that underlie the techniques covered, the purposes, advantages, and disadvantages of the techniques, and valid interpretations of those techniques. Available with InfoTrac Student Collections http://gocengage.com/infotrac. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.



Applied Linear Regression

Applied Linear Regression Author Sanford Weisberg
ISBN-10 9781118625958
Release 2013-06-07
Pages
Download Link Click Here

Applied Linear Regression has been writing in one form or another for most of life. You can find so many inspiration from Applied Linear Regression also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Applied Linear Regression book for free.



Applied Regression Modeling

Applied Regression Modeling Author Iain Pardoe
ISBN-10 9781118345047
Release 2013-01-07
Pages 346
Download Link Click Here

Praise for the First Edition "The attention to detail is impressive. The book is very well written and the author is extremely careful with his descriptions . . . the examples are wonderful." —The American Statistician Fully revised to reflect the latest methodologies and emerging applications, Applied Regression Modeling, Second Edition continues to highlight the benefits of statistical methods, specifically regression analysis and modeling, for understanding, analyzing, and interpreting multivariate data in business, science, and social science applications. The author utilizes a bounty of real-life examples, case studies, illustrations, and graphics to introduce readers to the world of regression analysis using various software packages, including R, SPSS, Minitab, SAS, JMP, and S-PLUS. In a clear and careful writing style, the book introduces modeling extensions that illustrate more advanced regression techniques, including logistic regression, Poisson regression, discrete choice models, multilevel models, and Bayesian modeling. In addition, the Second Edition features clarification and expansion of challenging topics, such as: Transformations, indicator variables, and interaction Testing model assumptions Nonconstant variance Autocorrelation Variable selection methods Model building and graphical interpretation Throughout the book, datasets and examples have been updated and additional problems are included at the end of each chapter, allowing readers to test their comprehension of the presented material. In addition, a related website features the book's datasets, presentation slides, detailed statistical software instructions, and learning resources including additional problems and instructional videos. With an intuitive approach that is not heavy on mathematical detail, Applied Regression Modeling, Second Edition is an excellent book for courses on statistical regression analysis at the upper-undergraduate and graduate level. The book also serves as a valuable resource for professionals and researchers who utilize statistical methods for decision-making in their everyday work.



A Primer on Linear Models

A Primer on Linear Models Author John F. Monahan
ISBN-10 1420062042
Release 2008-03-31
Pages 304
Download Link Click Here

A Primer on Linear Models presents a unified, thorough, and rigorous development of the theory behind the statistical methodology of regression and analysis of variance (ANOVA). It seamlessly incorporates these concepts using non-full-rank design matrices and emphasizes the exact, finite sample theory supporting common statistical methods. With coverage steadily progressing in complexity, the text first provides examples of the general linear model, including multiple regression models, one-way ANOVA, mixed-effects models, and time series models. It then introduces the basic algebra and geometry of the linear least squares problem, before delving into estimability and the Gauss–Markov model. After presenting the statistical tools of hypothesis tests and confidence intervals, the author analyzes mixed models, such as two-way mixed ANOVA, and the multivariate linear model. The appendices review linear algebra fundamentals and results as well as Lagrange multipliers. This book enables complete comprehension of the material by taking a general, unifying approach to the theory, fundamentals, and exact results of linear models.



Statistics for Health Professionals

Statistics for Health Professionals Author Susan Shott
ISBN-10 UOM:49015001115931
Release 1990-01
Pages 418
Download Link Click Here

Assists nursing and health professionals in gaining a basic understanding of statistics. Appropriate for self-study or course use, this pratical text trains the student to become a better consumer of research by identifying violations of statistical assumptions and interpreting results. Emphasizes a general understanding, rather than memorization, of formulas. Where possible, calculations are simplified to avoid "number crunching." Numerous practical examples taken from published research, exercises, objectives, and summaries to aid learning.



Basic Statistics

Basic Statistics Author Olive Jean Dunn
ISBN-10 0470496851
Release 2009-08-11
Pages 288
Download Link Click Here

New Edition of a Classic Guide to Statistical Applications in the Biomedical Sciences In the last decade, there have been significant changes in the way statistics is incorporated into biostatistical, medical, and public health research. Addressing the need for a modernized treatment of these statistical applications, Basic Statistics, Fourth Edition presents relevant, up-to-date coverage of research methodology using careful explanations of basic statistics and how they are used to address practical problems that arise in the medical and public health settings. Through concise and easy-to-follow presentations, readers will learn to interpret and examine data by applying common statistical tools, such as sampling, random assignment, and survival analysis. Continuing the tradition of its predecessor, this new edition outlines a thorough discussion of different kinds of studies and guides readers through the important, related decision-making processes such as determining what information is needed and planning the collections process. The book equips readers with the knowledge to carry out these practices by explaining the various types of studies that are commonly conducted in the fields of medical and public health, and how the level of evidence varies depending on the area of research. Data screening and data entry into statistical programs is explained and accompanied by illustrations of statistical analyses and graphs. Additional features of the Fourth Edition include: A new chapter on data collection that outlines the initial steps in planning biomedical and public health studies A new chapter on nonparametric statistics that includes a discussion and application of the Sign test, the Wilcoxon Signed Rank test, and the Wilcoxon Rank Sum test and its relationship to the Mann-Whitney U test An updated introduction to survival analysis that includes the Kaplan Meier method for graphing the survival function and a brief introduction to tests for comparing survival functions Incorporation of modern statistical software, such as SAS, Stata, SPSS, and Minitab into the presented discussion of data analysis Updated references at the end of each chapter Basic Statistics, Fourth Edition is an ideal book for courses on biostatistics, medicine, and public health at the upper-undergraduate and graduate levels. It is also appropriate as a reference for researchers and practitioners who would like to refresh their fundamental understanding of statistical techniques.



Multivariate Statistical Methods

Multivariate Statistical Methods Author Bryan F.J. Manly
ISBN-10 9781498728997
Release 2016-11-03
Pages 269
Download Link Click Here

Multivariate Statistical Methods: A Primer provides an introductory overview of multivariate methods without getting too deep into the mathematical details. This fourth edition is a revised and updated version of this bestselling introductory textbook. It retains the clear and concise style of the previous editions of the book and focuses on examples from biological and environmental sciences. The major update with this edition is that R code has been included for each of the analyses described, although in practice any standard statistical package can be used. The original idea with this book still applies. This was to make it as short as possible and enable readers to begin using multivariate methods in an intelligent manner. With updated information on multivariate analyses, new references, and R code included, this book continues to provide a timely introduction to useful tools for multivariate statistical analysis.



Applied Regression Analysis

Applied Regression Analysis Author John O. Rawlings
ISBN-10 9780387227535
Release 2006-04-06
Pages 660
Download Link Click Here

Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to statistical methods and a thoeretical linear models course. Applied Regression Analysis emphasizes the concepts and the analysis of data sets. It provides a review of the key concepts in simple linear regression, matrix operations, and multiple regression. Methods and criteria for selecting regression variables and geometric interpretations are discussed. Polynomial, trigonometric, analysis of variance, nonlinear, time series, logistic, random effects, and mixed effects models are also discussed. Detailed case studies and exercises based on real data sets are used to reinforce the concepts. The data sets used in the book are available on the Internet.



A Handbook of Statistical Analyses using R Third Edition

A Handbook of Statistical Analyses using R  Third Edition Author Torsten Hothorn
ISBN-10 9781482204582
Release 2014-06-25
Pages 456
Download Link Click Here

Like the best-selling first two editions, A Handbook of Statistical Analyses using R, Third Edition provides an up-to-date guide to data analysis using the R system for statistical computing. The book explains how to conduct a range of statistical analyses, from simple inference to recursive partitioning to cluster analysis. New to the Third Edition Three new chapters on quantile regression, missing values, and Bayesian inference Extra material in the logistic regression chapter that describes a regression model for ordered categorical response variables Additional exercises More detailed explanations of R code New section in each chapter summarizing the results of the analyses Updated version of the HSAUR package (HSAUR3), which includes some slides that can be used in introductory statistics courses Whether you’re a data analyst, scientist, or student, this handbook shows you how to easily use R to effectively evaluate your data. With numerous real-world examples, it emphasizes the practical application and interpretation of results.



Applied statistics analysis of variance and regression

Applied statistics  analysis of variance and regression Author Olive Jean Dunn
ISBN-10 UCAL:B4405760
Release 1974
Pages 387
Download Link Click Here

Applied statistics analysis of variance and regression has been writing in one form or another for most of life. You can find so many inspiration from Applied statistics analysis of variance and regression also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Applied statistics analysis of variance and regression book for free.



The R Book

The R Book Author Michael J. Crawley
ISBN-10 9781118448960
Release 2012-11-07
Pages 1080
Download Link Click Here

Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)



Statistical Analysis of Medical Data Using SAS

Statistical Analysis of Medical Data Using SAS Author Geoff Der
ISBN-10 158488469X
Release 2005-09-20
Pages 440
Download Link Click Here

Statistical analysis is ubiquitous in modern medical research. Logistic regression, generalized linear models, random effects models, and Cox's regression all have become commonplace in the medical literature. But while statistical software such as SAS make routine application of these techniques possible, users who are not primarily statisticians must take care to correctly implement the various procedures and correctly interpret the output. Statistical Analysis of Medical Data Using SAS demonstrates how to use SAS to analyze medical data. Each chapter addresses a particular analysis method. The authors briefly describe each procedure, but focus on its SAS implementation and properly interpreting the output. The carefully designed presentation relegates the theoretical details to "Displays," so that the code and results can be explored without interruption. All of the code and data sets used in the book are available for download from either the SAS Web site or www.crcpress.com. Der and Everitt, authors of the best-selling Handbook of Statistical Analyses Using SAS, bring all of their considerable talent and experience to bear in this book. Step-by-step instructions, lucid explanations and clear examples combine to form an outstanding, self-contained guide--suitable for medical researchers and statisticians alike--to using SAS to analyze medical data.



Applied Statistics

Applied Statistics Author Ruth M. Mickey
ISBN-10 047137038X
Release 2004-02-06
Pages 448
Download Link Click Here

The Wiley Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . . overall this is an excellent book . . . I recommend this book to everyone . . ." —Statistical Methods in Medical Research ". . . it contains a wealth of useful up-to-date information and examples from the health sciences." —Technometrics Applied Statistics: Analysis of Variance and Regression, Third Edition has been thoroughly revised to provide a comprehensive and up-to-date combination of sound statistical methodology, practical advice on the application of this methodology, and interpretation of output from statistical programs. Special features include comprehensive treatment of each topic, from summarization of data to presentation of results; a greater emphasis on regression, data screening, and confidence intervals; in-depth discussion of design-related topics such as mixed models and random effects; and overviews of more advanced topics. This valuable, self-contained textbook is eminently suitable for upper-undergraduate/graduate students and applied researchers with an interest in ANOVA techniques.



Introduction to WinBUGS for Ecologists

Introduction to WinBUGS for Ecologists Author Marc Kery
ISBN-10 0123786061
Release 2010-07-19
Pages 320
Download Link Click Here

Introduction to WinBUGS for Ecologists introduces applied Bayesian modeling to ecologists using the highly acclaimed, free WinBUGS software. It offers an understanding of statistical models as abstract representations of the various processes that give rise to a data set. Such an understanding is basic to the development of inference models tailored to specific sampling and ecological scenarios. The book begins by presenting the advantages of a Bayesian approach to statistics and introducing the WinBUGS software. It reviews the four most common statistical distributions: the normal, the uniform, the binomial, and the Poisson. It describes the two different kinds of analysis of variance (ANOVA): one-way and two- or multiway. It looks at the general linear model, or ANCOVA, in R and WinBUGS. It introduces generalized linear model (GLM), i.e., the extension of the normal linear model to allow error distributions other than the normal. The GLM is then extended contain additional sources of random variation to become a generalized linear mixed model (GLMM) for a Poisson example and for a binomial example. The final two chapters showcase two fairly novel and nonstandard versions of a GLMM. The first is the site-occupancy model for species distributions; the second is the binomial (or N-) mixture model for estimation and modeling of abundance. Introduction to the essential theories of key models used by ecologists Complete juxtaposition of classical analyses in R and Bayesian analysis of the same models in WinBUGS Provides every detail of R and WinBUGS code required to conduct all analyses Companion Web Appendix that contains all code contained in the book and additional material (including more code and solutions to exercises)