Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Probabilistic Graphical Models

Probabilistic Graphical Models Author Daphne Koller
ISBN-10 9780262258357
Release 2009-07-31
Pages 1280
Download Link Click Here

Most tasks require a person or an automated system to reason -- to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.



Probabilistic Graphical Models

Probabilistic Graphical Models Author Daphne Koller
ISBN-10 9780262013192
Release 2009
Pages 1231
Download Link Click Here

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.



Probabilistic Graphical Models

Probabilistic Graphical Models Author Daphne Koller
ISBN-10 9780262013192
Release 2009
Pages 1231
Download Link Click Here

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.



Learning in Graphical Models

Learning in Graphical Models Author M.I. Jordan
ISBN-10 9789401150149
Release 2012-12-06
Pages 630
Download Link Click Here

In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.



Machine Learning

Machine Learning Author Kevin P. Murphy
ISBN-10 9780262018029
Release 2012-08-24
Pages 1067
Download Link Click Here

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.



Graphical Models

Graphical Models Author Michael Irwin Jordan
ISBN-10 0262600420
Release 2001
Pages 421
Download Link Click Here

This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithm and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research. Graphical models use graphs to represent and manipulate joint probability distributions. They have their roots in artificial intelligence, statistics, and neural networks. The clean mathematical formalism of the graphical models framework makes it possible to understand a wide variety of network-based approaches to computation, and in particular to understand many neural network algorithms and architectures as instances of a broader probabilistic methodology. It also makes it possible to identify novel features of neural network algorithms and architectures and to extend them to more general graphical models.This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithms and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research. Contributors H. Attias, C. M. Bishop, B. J. Frey, Z. Ghahramani, D. Heckerman, G. E. Hinton, R. Hofmann, R. A. Jacobs, Michael I. Jordan, H. J. Kappen, A. Krogh, R. Neal, S. K. Riis, F. B. Rodríguez, L. K. Saul, Terrence J. Sejnowski, P. Smyth, M. E. Tipping, V. Tresp, Y. Weiss



Building Probabilistic Graphical Models with Python

Building Probabilistic Graphical Models with Python Author Kiran R Karkera
ISBN-10 9781783289011
Release 2014-06-25
Pages 172
Download Link Click Here

This is a short, practical guide that allows data scientists to understand the concepts of Graphical models and enables them to try them out using small Python code snippets, without being too mathematically complicated. If you are a data scientist who knows about machine learning and want to enhance your knowledge of graphical models, such as Bayes network, in order to use them to solve real-world problems using Python libraries, this book is for you.This book is intended for those who have some Python and machine learning experience, or are exploring the machine learning field.



Graphical Models for Machine Learning and Digital Communication

Graphical Models for Machine Learning and Digital Communication Author Brendan J. Frey
ISBN-10 026206202X
Release 1998
Pages 195
Download Link Click Here

Content Description. #Includes bibliographical references and index.



Bayesian Reasoning and Machine Learning

Bayesian Reasoning and Machine Learning Author David Barber
ISBN-10 9780521518147
Release 2012-02-02
Pages 697
Download Link Click Here

A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.



Probabilistic Graphical Models

Probabilistic Graphical Models Author Luis Enrique Sucar
ISBN-10 9781447166993
Release 2015-06-19
Pages 253
Download Link Click Here

This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.



Graphical Models with R

Graphical Models with R Author Søren Højsgaard
ISBN-10 9781461422990
Release 2012-02-22
Pages 182
Download Link Click Here

Graphical models in their modern form have been around since the late 1970s and appear today in many areas of the sciences. Along with the ongoing developments of graphical models, a number of different graphical modeling software programs have been written over the years. In recent years many of these software developments have taken place within the R community, either in the form of new packages or by providing an R interface to existing software. This book attempts to give the reader a gentle introduction to graphical modeling using R and the main features of some of these packages. In addition, the book provides examples of how more advanced aspects of graphical modeling can be represented and handled within R. Topics covered in the seven chapters include graphical models for contingency tables, Gaussian and mixed graphical models, Bayesian networks and modeling high dimensional data.



Machine Learning in Non Stationary Environments

Machine Learning in Non Stationary Environments Author Masashi Sugiyama
ISBN-10 9780262300438
Release 2012-03-30
Pages 280
Download Link Click Here

As the power of computing has grown over the past few decades, the field of machine learning has advanced rapidly in both theory and practice. Machine learning methods are usually based on the assumption that the data generation mechanism does not change over time. Yet real-world applications of machine learning, including image recognition, natural language processing, speech recognition, robot control, and bioinformatics, often violate this common assumption. Dealing with non-stationarity is one of modern machine learning's greatest challenges. This book focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) change but the conditional distribution of outputs (answers) is unchanged, and presents machine learning theory, algorithms, and applications to overcome this variety of non-stationarity. After reviewing the state-of-the-art research in the field, the authors discuss topics that include learning under covariate shift, model selection, importance estimation, and active learning. They describe such real world applications of covariate shift adaption as brain-computer interface, speaker identification, and age prediction from facial images. With this book, they aim to encourage future research in machine learning, statistics, and engineering that strives to create truly autonomous learning machines able to learn under non-stationarity.



Mastering Probabilistic Graphical Models Using Python

Mastering Probabilistic Graphical Models Using Python Author Ankur Ankan
ISBN-10 9781784395216
Release 2015-08-03
Pages 284
Download Link Click Here

Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python About This Book Gain in-depth knowledge of Probabilistic Graphical Models Model time-series problems using Dynamic Bayesian Networks A practical guide to help you apply PGMs to real-world problems Who This Book Is For If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian Learning or Probabilistic Graphical Models, this book will help you to understand the details of Graphical Models and use it in your data science problems. This book will also help you select the appropriate model as well as the appropriate algorithm for your problem. What You Will Learn Get to know the basics of Probability theory and Graph Theory Work with Markov Networks Implement Bayesian Networks Exact Inference Techniques in Graphical Models such as the Variable Elimination Algorithm Understand approximate Inference Techniques in Graphical Models such as Message Passing Algorithms Sample algorithms in Graphical Models Grasp details of Naive Bayes with real-world examples Deploy PGMs using various libraries in Python Gain working details of Hidden Markov Models with real-world examples In Detail Probabilistic Graphical Models is a technique in machine learning that uses the concepts of graph theory to compactly represent and optimally predict values in our data problems. In real world problems, it's often difficult to select the appropriate graphical model as well as the appropriate inference algorithm, which can make a huge difference in computation time and accuracy. Thus, it is crucial to know the working details of these algorithms. This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also to run different inference algorithms on them. There is a complete chapter devoted to the most widely used networks Naive Bayes Model and Hidden Markov Models (HMMs). These models have been thoroughly discussed using real-world examples. Style and approach An easy-to-follow guide to help you understand Probabilistic Graphical Models using simple examples and numerous code examples, with an emphasis on more widely used models.



Introduction to Statistical Relational Learning

Introduction to Statistical Relational Learning Author Lise Getoor
ISBN-10 9780262072885
Release 2007
Pages 586
Download Link Click Here

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications.



Graphical Models

Graphical Models Author Steffen L. Lauritzen
ISBN-10 9780191591228
Release 1996-05-02
Pages 308
Download Link Click Here

The idea of modelling systems using graph theory has its origin in several scientific areas: in statistical physics (the study of large particle systems), in genetics (studying inheritable properties of natural species), and in interactions in contingency tables. The use of graphical models in statistics has increased considerably over recent years and the theory has been greatly developed and extended. This book provides the first comprehensive and authoritative account of the theory of graphical models and is written by a leading expert in the field. It contains the fundamental graph theory required and a thorough study of Markov properties associated with various type of graphs. The statistical theory of log-linear and graphical models for contingency tables, covariance selection models, and graphical models with mixed discrete-continous variables in developed detail. Special topics, such as the application of graphical models to probabilistic expert systems, are described briefly, and appendices give details of the multivarate normal distribution and of the theory of regular exponential families. The author has recently been awarded the RSS Guy Medal in Silver 1996 for his innovative contributions to statistical theory and practice, and especially for his work on graphical models.



Graphical Models

Graphical Models Author Christian Borgelt
ISBN-10 0470749563
Release 2009-07-30
Pages 404
Download Link Click Here

Graphical models are of increasing importance in applied statistics, and in particular in data mining. Providing a self-contained introduction and overview to learning relational, probabilistic, and possibilistic networks from data, this second edition of Graphical Models is thoroughly updated to include the latest research in this burgeoning field, including a new chapter on visualization. The text provides graduate students, and researchers with all the necessary background material, including modelling under uncertainty, decomposition of distributions, graphical representation of distributions, and applications relating to graphical models and problems for further research.



Reinforcement Learning

Reinforcement Learning Author Richard S. Sutton
ISBN-10 9781461536185
Release 2012-12-06
Pages 172
Download Link Click Here

Reinforcement learning is the learning of a mapping from situations to actions so as to maximize a scalar reward or reinforcement signal. The learner is not told which action to take, as in most forms of machine learning, but instead must discover which actions yield the highest reward by trying them. In the most interesting and challenging cases, actions may affect not only the immediate reward, but also the next situation, and through that all subsequent rewards. These two characteristics -- trial-and-error search and delayed reward -- are the most important distinguishing features of reinforcement learning. Reinforcement learning is both a new and a very old topic in AI. The term appears to have been coined by Minsk (1961), and independently in control theory by Walz and Fu (1965). The earliest machine learning research now viewed as directly relevant was Samuel's (1959) checker player, which used temporal-difference learning to manage delayed reward much as it is used today. Of course learning and reinforcement have been studied in psychology for almost a century, and that work has had a very strong impact on the AI/engineering work. One could in fact consider all of reinforcement learning to be simply the reverse engineering of certain psychological learning processes (e.g. operant conditioning and secondary reinforcement). Reinforcement Learning is an edited volume of original research, comprising seven invited contributions by leading researchers.