Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Probability

Probability Author Jim Pitman
ISBN-10 UOM:39015050191603
Release 1993
Pages 559
Download Link Click Here

Preface to the Instructor This is a text for a one-quarter or one-semester course in probability, aimed at stu dents who have done a year of calculus. The book is organized so a student can learn the fundamental ideas of probability from the first three chapters without reliance on calculus. Later chapters develop these ideas further using calculus tools. The book contains more than the usual number of examples worked out in detail. It is not possible to go through all these examples in class. Rather, I suggest that you deal quickly with the main points of theory, then spend class time on problems from the exercises, or your own favorite problems. The most valuable thing for students to learn from a course like this is how to pick up a probability problem in a new setting and relate it to the standard body of theory. The more they see this happen in class, and the more they do it themselves in exercises, the better. The style of the text is deliberately informal. My experience is that students learn more from intuitive explanations, diagrams, and examples than they do from theo rems and proofs. So the emphasis is on problem solving rather than theory.



An Intermediate Course in Probability

An Intermediate Course in Probability Author Allan Gut
ISBN-10 9781441901620
Release 2009-06-06
Pages 303
Download Link Click Here

This is the only book that gives a rigorous and comprehensive treatment with lots of examples, exercises, remarks on this particular level between the standard first undergraduate course and the first graduate course based on measure theory. There is no competitor to this book. The book can be used in classrooms as well as for self-study.



Probability for Statisticians

Probability for Statisticians Author Galen R. Shorack
ISBN-10 9783319522074
Release 2017-09-21
Pages 510
Download Link Click Here

The choice of examples used in this text clearly illustrate its use for a one-year graduate course. The material to be presented in the classroom constitutes a little more than half the text, while the rest of the text provides background, offers different routes that could be pursued in the classroom, as well as additional material that is appropriate for self-study. Of particular interest is a presentation of the major central limit theorems via Steins method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function, with both the bootstrap and trimming presented. The section on martingales covers censored data martingales.



A Modern Introduction to Probability and Statistics

A Modern Introduction to Probability and Statistics Author F.M. Dekking
ISBN-10 9781846281686
Release 2006-03-30
Pages 488
Download Link Click Here

Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books



Probability via Expectation

Probability via Expectation Author Peter Whittle
ISBN-10 0387989552
Release 2000-04-20
Pages 352
Download Link Click Here

The third edition of 1992 constituted a major reworking of the original text, and the preface to that edition still represents my position on the issues that stimulated me first to write. The present edition contains a number of minor modifications and corrections, but its principal innovation is the addition of material on dynamic programming, optimal allocation, option pricing and large deviations. These are substantial topics, but ones into which one can gain an insight with less labour than is generally thought. They all involve the expectation concept in an essential fashion, even the treatment of option pricing, which seems initially to forswear expectation in favour of an arbitrage criterion. I am grateful to readers and to Springer-Verlag for their continuing interest in the approach taken in this work. Peter Whittle Preface to the Third Edition This book is a complete revision of the earlier work Probability which appeared in 1970. While revised so radically and incorporating so much new material as to amount to a new text, it preserves both the aim and the approach of the original. That aim was stated as the provision of a 'first text in probability, demanding a reasonable but not extensive knowledge of mathematics, and taking the reader to what one might describe as a good intermediate level' . In doing so it attempted to break away from stereotyped applications, and consider applications of a more novel and significant character.



Asymptotic Theory of Statistics and Probability

Asymptotic Theory of Statistics and Probability Author Anirban DasGupta
ISBN-10 9780387759715
Release 2008-02-06
Pages 722
Download Link Click Here

This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.



All of Statistics

All of Statistics Author Larry Wasserman
ISBN-10 9780387217369
Release 2013-12-11
Pages 442
Download Link Click Here

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.



Measure Theory and Probability Theory

Measure Theory and Probability Theory Author Krishna B. Athreya
ISBN-10 9780387329031
Release 2006-07-27
Pages 618
Download Link Click Here

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.



Probability for Statistics and Machine Learning

Probability for Statistics and Machine Learning Author Anirban DasGupta
ISBN-10 1441996346
Release 2011-05-17
Pages 784
Download Link Click Here

This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.



Fundamentals of Probability A First Course

Fundamentals of Probability  A First Course Author Anirban DasGupta
ISBN-10 9781441957801
Release 2010-04-02
Pages 450
Download Link Click Here

Probability theory is one branch of mathematics that is simultaneously deep and immediately applicable in diverse areas of human endeavor. It is as fundamental as calculus. Calculus explains the external world, and probability theory helps predict a lot of it. In addition, problems in probability theory have an innate appeal, and the answers are often structured and strikingly beautiful. A solid background in probability theory and probability models will become increasingly more useful in the twenty-?rst century, as dif?cult new problems emerge, that will require more sophisticated models and analysis. Thisisa text onthe fundamentalsof thetheoryofprobabilityat anundergraduate or ?rst-year graduate level for students in science, engineering,and economics. The only mathematical background required is knowledge of univariate and multiva- ate calculus and basic linear algebra. The book covers all of the standard topics in basic probability, such as combinatorial probability, discrete and continuous distributions, moment generating functions, fundamental probability inequalities, the central limit theorem, and joint and conditional distributions of discrete and continuous random variables. But it also has some unique features and a forwa- looking feel.



Probability

Probability Author Alan F. Karr
ISBN-10 9781461208914
Release 2012-12-06
Pages 283
Download Link Click Here

This book offers a straightforward introduction to the mathematical theory of probability. It presents the central results and techniques of the subject in a complete and self-contained account. As a result, the emphasis is on giving results in simple forms with clear proofs and to eschew more powerful forms of theorems which require technically involved proofs. Throughout there are a wide variety of exercises to illustrate and to develop ideas in the text.



Probability with Applications in Engineering Science and Technology

Probability with Applications in Engineering  Science  and Technology Author Matthew A. Carlton
ISBN-10 9783319524016
Release 2017-04-25
Pages 643
Download Link Click Here

This updated and revised first-course textbook in applied probability provides a contemporary and lively post-calculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective engineers and scientists, and those business and social science majors interested in the quantitative aspects of their disciplines. The textbook contains enough material for a year-long course, though many instructors will use it for a single term (one semester or one quarter). As such, three course syllabi with expanded course outlines are now available for download on the book’s page on the Springer website. A one-term course would cover material in the core chapters (1-4), supplemented by selections from one or more of the remaining chapters on statistical inference (Ch. 5), Markov chains (Ch. 6), stochastic processes (Ch. 7), and signal processing (Ch. 8 – available exclusively online and specifically designed for electrical and computer engineers, making the book suitable for a one-term class on random signals and noise). For a year-long course, core chapters (1-4) are accessible to those who have taken a year of univariate differential and integral calculus; matrix algebra, multivariate calculus, and engineering mathematics are needed for the latter, more advanced chapters. At the heart of the textbook’s pedagogy are 1,100 applied exercises, ranging from straightforward to reasonably challenging, roughly 700 exercises in the first four “core” chapters alone—a self-contained textbook of problems introducing basic theoretical knowledge necessary for solving problems and illustrating how to solve the problems at hand – in R and MATLAB, including code so that students can create simulations.



Probability and Statistical Inference

Probability and Statistical Inference Author J. G. Kalbfleisch
ISBN-10 0387961445
Release 1985
Pages 343
Download Link Click Here

A carefully written text, suitable as an introductory course for second or third year students. The main scope of the text guides students towards a critical understanding and handling of data sets together with the ensuing testing of hypotheses. This approach distinguishes it from many other texts using statistical decision theory as their underlying philosophy. This volume covers concepts from probability theory, backed by numerous problems with selected answers.



Probability

Probability Author Jim Pitman
ISBN-10 9781461243748
Release 2012-12-06
Pages 560
Download Link Click Here

This is a text for a one-quarter or one-semester course in probability, aimed at students who have done a year of calculus. The book is organised so a student can learn the fundamental ideas of probability from the first three chapters without reliance on calculus. Later chapters develop these ideas further using calculus tools. The book contains more than the usual number of examples worked out in detail. The most valuable thing for students to learn from a course like this is how to pick up a probability problem in a new setting and relate it to the standard body of theory. The more they see this happen in class, and the more they do it themselves in exercises, the better. The style of the text is deliberately informal. My experience is that students learn more from intuitive explanations, diagrams, and examples than they do from theorems and proofs. So the emphasis is on problem solving rather than theory.



Statistics and Finance

Statistics and Finance Author David Ruppert
ISBN-10 9781441968760
Release 2014-02-26
Pages 474
Download Link Click Here

This book emphasizes the applications of statistics and probability to finance. The basics of these subjects are reviewed and more advanced topics in statistics, such as regression, ARMA and GARCH models, the bootstrap, and nonparametric regression using splines, are introduced as needed. The book covers the classical methods of finance and it introduces the newer area of behavioral finance. Applications and use of MATLAB and SAS software are stressed. The book will serve as a text in courses aimed at advanced undergraduates and masters students. Those in the finance industry can use it for self-study.



Mathematical Statistics

Mathematical Statistics Author Jun Shao
ISBN-10 9780387217185
Release 2008-02-03
Pages 592
Download Link Click Here

This graduate textbook covers topics in statistical theory essential for graduate students preparing for work on a Ph.D. degree in statistics. This new edition has been revised and updated and in this fourth printing, errors have been ironed out. The first chapter provides a quick overview of concepts and results in measure-theoretic probability theory that are useful in statistics. The second chapter introduces some fundamental concepts in statistical decision theory and inference. Subsequent chapters contain detailed studies on some important topics: unbiased estimation, parametric estimation, nonparametric estimation, hypothesis testing, and confidence sets. A large number of exercises in each chapter provide not only practice problems for students, but also many additional results.



Applied Probability Springer Texts in Statistics

Applied Probability  Springer Texts in Statistics Author Kenneth Lange
ISBN-10 OCLC:808036555
Release 2003
Pages 390
Download Link Click Here

Includes applications of probability to a wide range of fields, this book should be of particular interest to graduate students and researchers in the life sciences.