**Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.**

Author | Henry McKean | |

ISBN-10 | 9781107053212 | |

Release | 2014-11-27 | |

Pages | 488 | |

Download Link | Click Here |

A leading authority sheds light on a variety of interesting topics in which probability theory plays a key role. |

Author | Hans Fischer | |

ISBN-10 | 0387878572 | |

Release | 2010-10-08 | |

Pages | 402 | |

Download Link | Click Here |

This study discusses the history of the central limit theorem and related probabilistic limit theorems from about 1810 through 1950. In this context the book also describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The central limit theorem was originally deduced by Laplace as a statement about approximations for the distributions of sums of independent random variables within the framework of classical probability, which focused upon specific problems and applications. Making this theorem an autonomous mathematical object was very important for the development of modern probability theory. |

Author | Yu.V. Prokhorov | |

ISBN-10 | 9783662041727 | |

Release | 2013-03-14 | |

Pages | 273 | |

Download Link | Click Here |

A collection of research level surveys on certain topics in probability theory by a well-known group of researchers. The book will be of interest to graduate students and researchers. |

Author | Peter Eichelsbacher | |

ISBN-10 | 9783642360688 | |

Release | 2013-04-23 | |

Pages | 317 | |

Download Link | Click Here |

Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory. The book is the product of a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich Götze, a noted expert in this field. |

Author | Allan Gut | |

ISBN-10 | 9780387878355 | |

Release | 2009-04-03 | |

Pages | 263 | |

Download Link | Click Here |

Classical probability theory provides information about random walks after a fixed number of steps. For applications, however, it is more natural to consider random walks evaluated after a random number of steps. Examples are sequential analysis, queuing theory, storage and inventory theory, insurance risk theory, reliability theory, and the theory of contours. Stopped Random Walks: Limit Theorems and Applications shows how this theory can be used to prove limit theorems for renewal counting processes, first passage time processes, and certain two-dimenstional random walks, and to how these results are useful in various applications. This second edition offers updated content and an outlook on further results, extensions and generalizations. A new chapter examines nonlinear renewal processes in order to present the analagous theory for perturbed random walks, modeled as a random walk plus "noise." |

Author | Erich Häusler | |

ISBN-10 | 9783319183299 | |

Release | 2015-06-09 | |

Pages | 228 | |

Download Link | Click Here |

The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level with a solid knowledge of measure theoretic probability. |

Author | P. Hall | |

ISBN-10 | 9781483263229 | |

Release | 2014-07-10 | |

Pages | 320 | |

Download Link | Click Here |

Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics. |

Author | R. M. Dudley | |

ISBN-10 | 9780521461023 | |

Release | 1999-07-28 | |

Pages | 436 | |

Download Link | Click Here |

This treatise by an acknowledged expert includes several topics not found in any previous book. |

Author | Prakash Gorroochurn | |

ISBN-10 | 9781118314333 | |

Release | 2012-04-30 | |

Pages | 328 | |

Download Link | Click Here |

Winner of the 2012 PROSE Award for Mathematics from The American Publishers Awards for Professional and Scholarly Excellence. "A great book, one that I will certainly add to my personal library." —Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexing Paradox, the book clearly outlines the puzzles and problems of probability, interweaving the discussion with rich historical detail and the story of how the mathematicians involved arrived at their solutions. Each problem is given an in-depth treatment, including detailed and rigorous mathematical proofs as needed. Some of the fascinating topics discussed by the author include: Buffon's Needle problem and its ingenious treatment by Joseph Barbier, culminating into a discussion of invariance Various paradoxes raised by Joseph Bertrand Classic problems in decision theory, including Pascal's Wager, Kraitchik's Neckties, and Newcomb's problem The Bayesian paradigm and various philosophies of probability Coverage of both elementary and more complex problems, including the Chevalier de Méré problems, Fisher and the lady testing tea, the birthday problem and its various extensions, and the Borel-Kolmogorov paradox Classic Problems of Probability is an eye-opening, one-of-a-kind reference for researchers and professionals interested in the history of probability and the varied problem-solving strategies employed throughout the ages. The book also serves as an insightful supplement for courses on mathematical probability and introductory probability and statistics at the undergraduate level. |

Author | Erhan Çınlar | |

ISBN-10 | 0387878599 | |

Release | 2011-02-21 | |

Pages | 558 | |

Download Link | Click Here |

This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The book is based on the author’s lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President’s Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style. |

Author | Yakov G. Sinai | |

ISBN-10 | 9783662028452 | |

Release | 2013-03-09 | |

Pages | 140 | |

Download Link | Click Here |

Sinai's book leads the student through the standard material for ProbabilityTheory, with stops along the way for interesting topics such as statistical mechanics, not usually included in a book for beginners. The first part of the book covers discrete random variables, using the same approach, basedon Kolmogorov's axioms for probability, used later for the general case. The text is divided into sixteen lectures, each covering a major topic. The introductory notions and classical results are included, of course: random variables, the central limit theorem, the law of large numbers, conditional probability, random walks, etc. Sinai's style is accessible and clear, with interesting examples to accompany new ideas. Besides statistical mechanics, other interesting, less common topics found in the book are: percolation, the concept of stability in the central limit theorem and the study of probability of large deviations. Little more than a standard undergraduate course in analysis is assumed of the reader. Notions from measure theory and Lebesgue integration are introduced in the second half of the text. The book is suitable for second or third year students in mathematics, physics or other natural sciences. It could also be usedby more advanced readers who want to learn the mathematics of probability theory and some of its applications in statistical physics. |

Author | Davar Khoshnevisan | |

ISBN-10 | 9780821842157 | |

Release | 2007 | |

Pages | 224 | |

Download Link | Click Here |

This is a textbook for a one-semester graduate course in measure-theoretic probability theory, but with ample material to cover an ordinary year-long course at a more leisurely pace. Khoshnevisan's approach is to develop the ideas that are absolutely central to modern probability theory, and to showcase them by presenting their various applications. As a result, a few of the familiar topics are replaced by interesting non-standard ones. The topics range from undergraduate probability and classical limit theorems to Brownian motion and elements of stochastic calculus. Throughout, the reader will find many exciting applications of probability theory and probabilistic reasoning. There are numerous exercises, ranging from the routine to the very difficult. Each chapter concludes with historical notes. |

Author | Boris V. Gnedenko | |

ISBN-10 | 9781351408585 | |

Release | 2017-10-25 | |

Pages | 520 | |

Download Link | Click Here |

This book is the sixth edition of a classic text that was first published in 1950 in the former Soviet Union. The clear presentation of the subject and extensive applications supported with real data helped establish the book as a standard for the field. To date, it has been published into more that ten languages and has gone through five editions. The sixth edition is a major revision over the fifth. It contains new material and results on the Local Limit Theorem, the Integral Law of Large Numbers, and Characteristic Functions. The new edition retains the feature of developing the subject from intuitive concepts and demonstrating techniques and theory through large numbers of examples. The author has, for the first time, included a brief history of probability and its development. Exercise problems and examples have been revised and new ones added. |

Author | Stanley P. Gudder | |

ISBN-10 | 9780080918488 | |

Release | 2014-06-28 | |

Pages | 316 | |

Download Link | Click Here |

Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism. Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles. The first two chapters survey the necessary background in quantum mechanics and probability theory and therefore the book is fairly self-contained, assuming only an elementary knowledge of linear operators in Hilbert space. |

Author | James Davidson | |

ISBN-10 | 9780198774037 | |

Release | 1994 | |

Pages | 539 | |

Download Link | Click Here |

This is a survey of the recent developments in the rapidly expanding field of asymptotic distribution theory, with a special emphasis on the problems of time dependence and heterogeneity. The book is designed to be useful on two levels. First as a textbook and reference work, giving definitions of the relevant mathematical concepts, statements, and proofs of the important results from the probability literature, and numerous examples; and second, as an account of recent work in thefield of particular interest to econometricians, including a number of important new results. It is virtually self-contained, with all but the most basic technical prerequisites being explained in their context; mathematical topics include measure theory, integration, metric spaces, and topology, with applications to random variables, and an extended treatment of conditional probability. Other subjects treated include: stochastic processes, mixing processes, martingales, mixingales, and near-epoch dependence; the weak and strong laws of large numbers; weak convergence; and central limit theorems for nonstationary and dependent processes. The functional central limit theorem and its ramifications are covered in detail, including an account of the theoretical underpinnings (the weak convergence of measures on metric spaces), Brownian motion, the multivariate invariance principle, and convergence to stochastic integrals. This material is of special relevance to the theory of cointegration. |

Author | L. Z. Rumshiskii | |

ISBN-10 | 9781483136004 | |

Release | 2016-06-06 | |

Pages | 172 | |

Download Link | Click Here |

Elements of Probability Theory focuses on the basic ideas and methods of the theory of probability. The book first discusses events and probabilities, including the classical meaning of probability, fundamental properties of probabilities, and the primary rule for the multiplication of probabilities. The text also touches on random variables and probability distributions. Topics include discrete and random variables; functions of random variables; and binomial distributions. The selection also discusses the numerical characteristics of probability distributions; limit theorems and estimates of the mean; and the law of large numbers. The text also describes linear correlation, including conditional expectations and their properties, coefficient of correlation, and best linear approximation to the regression function. The book presents tables that show the values of the normal probability integral, Poisson distribution, and values of the normal probability density. The text is a good source of data for readers and students interested in probability theory. |

Author | Glenn Shafer | |

ISBN-10 | 9780471461715 | |

Release | 2005-03-11 | |

Pages | 440 | |

Download Link | Click Here |

Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory. |