Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Probability Theory

Probability Theory Author Nikolai Dokuchaev
ISBN-10 9789814678056
Release 2015-06-12
Pages 224
Download Link Click Here

This book provides a systematic, self-sufficient and yet short presentation of the mainstream topics on introductory Probability Theory with some selected topics from Mathematical Statistics. It is suitable for a 10- to 14-week course for second- or third-year undergraduate students in Science, Mathematics, Statistics, Finance, or Economics, who have completed some introductory course in Calculus. There is a sufficient number of problems and solutions to cover weekly tutorials.



A First Look at Rigorous Probability Theory

A First Look at Rigorous Probability Theory Author Jeffrey S Rosenthal
ISBN-10 9789813101654
Release 2006-11-14
Pages 236
Download Link Click Here

Solutions Manual for Free Download This textbook is an introduction to probability theory using measure theory. It is designed for graduate students in a variety of fields (mathematics, statistics, economics, management, finance, computer science, and engineering) who require a working knowledge of probability theory that is mathematically precise, but without excessive technicalities. The text provides complete proofs of all the essential introductory results. Nevertheless, the treatment is focused and accessible, with the measure theory and mathematical details presented in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects. In this new edition, many exercises and small additional topics have been added and existing ones expanded. The text strikes an appropriate balance, rigorously developing probability theory while avoiding unnecessary detail.



Probability Essentials

Probability Essentials Author Jean Jacod
ISBN-10 9783642556821
Release 2012-12-06
Pages 254
Download Link Click Here

This introduction can be used, at the beginning graduate level, for a one-semester course on probability theory or for self-direction without benefit of a formal course; the measure theory needed is developed in the text. It will also be useful for students and teachers in related areas such as finance theory, electrical engineering, and operations research. The text covers the essentials in a directed and lean way with 28 short chapters, and assumes only an undergraduate background in mathematics. Readers are taken right up to a knowledge of the basics of Martingale Theory, and the interested student will be ready to continue with the study of more advanced topics, such as Brownian Motion and Ito Calculus, or Statistical Inference.



A Basic Course in Probability Theory

A Basic Course in Probability Theory Author Rabi Bhattacharya
ISBN-10 9783319479743
Release 2017-02-13
Pages 265
Download Link Click Here

This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded. General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added, with illustrative comparisons of their use in practice. This also includes a treatment of the Berry–Esseen error estimate in the central limit theorem. The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications.



Probability Theory an Analytic View

Probability Theory  an Analytic View Author Daniel W. Stroock
ISBN-10 0521663490
Release 1999
Pages 536
Download Link Click Here

Revised edition of a first-year graduate course on probability theory.



Probability Theory and Statistical Inference

Probability Theory and Statistical Inference Author Aris Spanos
ISBN-10 0521424089
Release 1999-09-02
Pages 815
Download Link Click Here

A major textbook for students taking introductory courses in probability theory and statistical inference.



Measure Theory and Probability Theory

Measure Theory and Probability Theory Author Krishna B. Athreya
ISBN-10 9780387329031
Release 2006-07-27
Pages 618
Download Link Click Here

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.



Measure Theory and Probability Theory

Measure Theory and Probability Theory Author Krishna B. Athreya
ISBN-10 9780387329031
Release 2006-07-27
Pages 618
Download Link Click Here

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.



Probability Theory

Probability Theory Author A A Borovkov
ISBN-10 9056990462
Release 1999-02-19
Pages 484
Download Link Click Here

Probability theory forms the basis of mathematical statistics, and has applications in many related areas. This comprehensive book tackles the principal problems and advanced questions of probability theory in 21 self-contained chapters, which are presented in logical order, but are also easy to deal with individually. The book is further distinguished by the inclusion of clear and illustrative proofs of the fundamental results. Probability theory is currently an extremely active area of research internationally, and the importance of the Russian school in the development of the subject has long been recognized. The frequent references to Russian literature throughout this work lend a fresh dimension to the book, and make it an invaluable source of reference for Western researchers and advanced students in probability related subjects.



A User s Guide to Measure Theoretic Probability

A User s Guide to Measure Theoretic Probability Author David Pollard
ISBN-10 0521002893
Release 2002
Pages 351
Download Link Click Here

This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.



Theory of Probability and Random Processes

Theory of Probability and Random Processes Author Leonid Koralov
ISBN-10 9783540688297
Release 2007-08-10
Pages 358
Download Link Click Here

A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of this book. It provides a comprehensive and self-contained exposition of classical probability theory and the theory of random processes. The book includes detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. It also includes the theory of stationary random processes, martingales, generalized random processes, and Brownian motion.



Probability Theory

Probability Theory Author Alexandr A. Borovkov
ISBN-10 9781447152019
Release 2013-06-22
Pages 733
Download Link Click Here

This self-contained, comprehensive book tackles the principal problems and advanced questions of probability theory and random processes in 22 chapters, presented in a logical order but also suitable for dipping into. They include both classical and more recent results, such as large deviations theory, factorization identities, information theory, stochastic recursive sequences. The book is further distinguished by the inclusion of clear and illustrative proofs of the fundamental results that comprise many methodological improvements aimed at simplifying the arguments and making them more transparent. The importance of the Russian school in the development of probability theory has long been recognized. This book is the translation of the fifth edition of the highly successful Russian textbook. This edition includes a number of new sections, such as a new chapter on large deviation theory for random walks, which are of both theoretical and applied interest. The frequent references to Russian literature throughout this work lend a fresh dimension and make it an invaluable source of reference for Western researchers and advanced students in probability related subjects. Probability Theory will be of interest to both advanced undergraduate and graduate students studying probability theory and its applications. It can serve as a basis for several one-semester courses on probability theory and random processes as well as self-study.



Elements of Stochastic Modelling

Elements of Stochastic Modelling Author Konstantin Borovkov
ISBN-10 9789814571180
Release 2014-06-30
Pages 500
Download Link Click Here

This is the expanded second edition of a successful textbook that provides a broad introduction to important areas of stochastic modelling. The original text was developed from lecture notes for a one-semester course for third-year science and actuarial students at the University of Melbourne. It reviewed the basics of probability theory and then covered the following topics: Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. The present edition adds new chapters on elements of stochastic calculus and introductory mathematical finance that logically complement the topics chosen for the first edition. This makes the book suitable for a larger variety of university courses presenting the fundamentals of modern stochastic modelling. Instead of rigorous proofs we often give only sketches of the arguments, with indications as to why a particular result holds and also how it is related to other results, and illustrate them by examples. Wherever possible, the book includes references to more specialised texts on respective topics that contain both proofs and more advanced material. Request Inspection Copy



Probability

Probability Author Davar Khoshnevisan
ISBN-10 9780821842157
Release 2007
Pages 224
Download Link Click Here

This is a textbook for a one-semester graduate course in measure-theoretic probability theory, but with ample material to cover an ordinary year-long course at a more leisurely pace. Khoshnevisan's approach is to develop the ideas that are absolutely central to modern probability theory, and to showcase them by presenting their various applications. As a result, a few of the familiar topics are replaced by interesting non-standard ones. The topics range from undergraduate probability and classical limit theorems to Brownian motion and elements of stochastic calculus. Throughout, the reader will find many exciting applications of probability theory and probabilistic reasoning. There are numerous exercises, ranging from the routine to the very difficult. Each chapter concludes with historical notes.



Probability Theory and Applications

Probability Theory and Applications Author Enders Robinson
ISBN-10 9789400953864
Release 2013-12-11
Pages 420
Download Link Click Here

Probability theory and its applications represent a discipline of fun damental importance to nearly all people working in the high-tech nology world that surrounds us. There is increasing awareness that we should ask not "Is it so?" but rather "What is the probability that it is so?" As a result, most colleges and universities require a course in mathematical probability to be given as part of the undergraduate training of all scientists, engineers, and mathematicians. This book is a text for a first course in the mathematical theory of probability for undergraduate students who have the prerequisite of at least two, and better three, semesters of calculus. In particular, the student must have a good working knowledge of power series expan sions and integration. Moreover, it would be helpful if the student has had some previous exposure to elementary probability theory, either in an elementary statistics course or a finite mathematics course in high school or college. If these prerequisites are met, then a good part of the material in this book can be covered in a semester (IS-week) course that meets three hours a week.



Mathematical Statistics with Applications in R

Mathematical Statistics with Applications in R Author Kandethody M. Ramachandran
ISBN-10 9780124171329
Release 2014-09-14
Pages 826
Download Link Click Here

Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner. This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students. Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. Step-by-step procedure to solve real problems, making the topic more accessible Exercises blend theory and modern applications Practical, real-world chapter projects Provides an optional section in each chapter on using Minitab, SPSS and SAS commands Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods



Probability

Probability Author Alʹbert Nikolaevich Shiri͡aev
ISBN-10 0387945490
Release 1996
Pages 621
Download Link Click Here

In the Preface to the first edition, originally published in 1980, we mentioned that this book was based on the author's lectures in the Department of Mechanics and Mathematics of the Lomonosov University in Moscow, which were issued, in part, in mimeographed form under the title "Probabil ity, Statistics, and Stochastic Processors, I, II" and published by that Univer sity. Our original intention in writing the first edition of this book was to divide the contents into three parts: probability, mathematical statistics, and theory of stochastic processes, which corresponds to an outline of a three semester course of lectures for university students of mathematics. However, in the course of preparing the book, it turned out to be impossible to realize this intention completely, since a full exposition would have required too much space. In this connection, we stated in the Preface to the first edition that only probability theory and the theory of random processes with discrete time were really adequately presented. Essentially all of the first edition is reproduced in this second edition. Changes and corrections are, as a rule, editorial, taking into account com ments made by both Russian and foreign readers of the Russian original and ofthe English and Germantranslations [Sll]. The author is grateful to all of these readers for their attention, advice, and helpful criticisms. In this second English edition, new material also has been added, as follows: in Chapter 111, §5, §§7-12; in Chapter IV, §5; in Chapter VII, §§8-10.