Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Process Modelling Identification and Control

Process Modelling  Identification  and Control Author Ján Mikleš
ISBN-10 9783540719700
Release 2007-06-30
Pages 480
Download Link Click Here

This compact and original reference and textbook presents the most important classical and modern essentials of control engineering in a single volume. It constitutes a harmonic mixture of control theory and applications, which makes the book especially useful for students, practicing engineers and researchers interested in modeling and control of processes. Well written and easily understandable, it includes a range of methods for the analysis and design of control systems.



Advanced Process Identification and Control

Advanced Process Identification and Control Author Enso Ikonen
ISBN-10 082470648X
Release 2001-10-02
Pages 328
Download Link Click Here

A presentation of techniques in advanced process modelling, identification, prediction, and parameter estimation for the implementation and analysis of industrial systems. The authors cover applications for the identification of linear and non-linear systems, the design of generalized predictive controllers (GPCs), and the control of multivariable systems.



Hydraulic Servo systems

Hydraulic Servo systems Author Mohieddine Jelali
ISBN-10 9781447100997
Release 2012-12-06
Pages 355
Download Link Click Here

This up-to-date book details the basic concepts of many recent developments of nonlinear identification and nonlinear control, and their application to hydraulic servo-systems. It is very application-oriented and provides the reader with detailed working procedures and hints for implementation routines and software tools.



Marine Systems Identification Modeling and Control

Marine Systems Identification  Modeling and Control Author Tony Roskilly
ISBN-10 9780081000106
Release 2015-04-06
Pages 190
Download Link Click Here

Marine Systems Identification, Modeling and Control is a concise, stand-alone resource covering the theory and practice of dynamic systems and control for marine engineering students and professionals. Developed from a distance learning CPD course on marine control taught by the authors, the book presents the essentials of the subject, including system representation and transfer, feedback control and closed loop stability. Simulation code and worked examples are provided for both Scilab and MATLAB, making it suitable for both those without access to expensive software and those using MATLAB in a professional setting. This title considers the key topics without superfluous detail and is illustrated with marine industry examples. Concise and practical, covering the relevant theory without excessive detail Industry-specific examples and applications for marine engineering students and professionals Clearly presents key topics of the subject, including system representation and transfer, feedback control and closed loop stability, making it ideal for self-study or reference Simulation code and worked examples using Scilab and MATLAB provided on the book’s companion website



Modeling Identification and Control of Robots

Modeling  Identification and Control of Robots Author W. Khalil
ISBN-10 9780080536613
Release 2004-07-01
Pages 500
Download Link Click Here

Written by two of Europe’s leading robotics experts, this book provides the tools for a unified approach to the modelling of robotic manipulators, whatever their mechanical structure. No other publication covers the three fundamental issues of robotics: modelling, identification and control. It covers the development of various mathematical models required for the control and simulation of robots. · World class authority · Unique range of coverage not available in any other book · Provides a complete course on robotic control at an undergraduate and graduate level



Identification of Dynamic Systems

Identification of Dynamic Systems Author Rolf Isermann
ISBN-10 3540788794
Release 2010-11-22
Pages 705
Download Link Click Here

Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.



Modelling Identification And Robust Control

Modelling  Identification And Robust Control Author Christopher Ian Byrnes
ISBN-10 UCAL:B4407171
Release 1986
Pages 631
Download Link Click Here

Modelling Identification And Robust Control has been writing in one form or another for most of life. You can find so many inspiration from Modelling Identification And Robust Control also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Modelling Identification And Robust Control book for free.



Multivariable System Identification For Process Control

Multivariable System Identification For Process Control Author Y. Zhu
ISBN-10 0080537111
Release 2001-10-08
Pages 372
Download Link Click Here

Systems and control theory has experienced significant development in the past few decades. New techniques have emerged which hold enormous potential for industrial applications, and which have therefore also attracted much interest from academic researchers. However, the impact of these developments on the process industries has been limited. The purpose of Multivariable System Identification for Process Control is to bridge the gap between theory and application, and to provide industrial solutions, based on sound scientific theory, to process identification problems. The book is organized in a reader-friendly way, starting with the simplest methods, and then gradually introducing more complex techniques. Thus, the reader is offered clear physical insight without recourse to large amounts of mathematics. Each method is covered in a single chapter or section, and experimental design is explained before any identification algorithms are discussed. The many simulation examples and industrial case studies demonstrate the power and efficiency of process identification, helping to make the theory more applicable. MatlabTM M-files, designed to help the reader to learn identification in a computing environment, are included.



System Identification

System Identification Author Karel J. Keesman
ISBN-10 0857295225
Release 2011-05-16
Pages 323
Download Link Click Here

System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.



Process Dynamics Modeling and Control

Process Dynamics  Modeling  and Control Author Babatunde Ayodeji Ogunnaike
ISBN-10 0195091191
Release 1994
Pages 1260
Download Link Click Here

This much-needed text offers an up-to-the-minute introduction to process control in today's technology. Outstanding in its breadth and coherence, the book combines a classroom-tested overview of theory with a wealth of examples taken from the chemical process industry.



Innovative Techniques and Applications of Modelling Identification and Control

Innovative Techniques and Applications of Modelling  Identification and Control Author Quanmin Zhu
ISBN-10 9789811072123
Release 2018-04-20
Pages 453
Download Link Click Here

This book presents the most important findings from the 9th International Conference on Modelling, Identification and Control (ICMIC’17), held in Kunming, China on July 10–12, 2017. It covers most aspects of modelling, identification, instrumentation, signal processing and control, with a particular focus on the applications of research in multi-agent systems, robotic systems, autonomous systems, complex systems, and renewable energy systems. The book gathers thirty comprehensively reviewed and extended contributions, which help to promote evolutionary computation, artificial intelligence, computation intelligence and soft computing techniques to enhance the safety, flexibility and efficiency of engineering systems. Taken together, they offer an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, mechanical engineering and communication engineering.



Product and Process Modelling

Product and Process Modelling Author Ian T. Cameron
ISBN-10 9780080932316
Release 2011-09-12
Pages 548
Download Link Click Here

This book covers the area of product and process modelling via a case study approach. It addresses a wide range of modelling applications with emphasis on modelling methodology and the subsequent in-depth analysis of mathematical models to gain insight via structural aspects of the models. These approaches are put into the context of life cycle modelling, where multiscale and multiform modelling is increasingly prevalent in the 21st century. The book commences with a discussion of modern product and process modelling theory and practice followed by a series of case studies drawn from a variety of process industries. The book builds on the extensive modelling experience of the authors, who have developed models for both research and industrial purposes. It complements existing books by the authors in the modelling area. Those areas include the traditional petroleum and petrochemical industries to biotechnology applications, food, polymer and human health application areas. The book highlights to important nature of modern product and process modelling in the decision making processes across the life cycle. As such it provides an important resource for students, researchers and industrial practitioners. Ian Cameron is Professor in Chemical Engineering at the University of Queensland with teaching, research, and consulting activities in process systems engineering. He has a particular interest in process modelling, dynamic simulation, and the application of functional systems perspectives to risk management, having extensive industrial experience in these areas. He continues to work closely with industry and government on systems approaches to process and risk management issues. He received his BE from the University of New South Wales (Australia) and his PhD from imperial College London. He is a Fellow of IChemE. Rafiqul Gani is a Professor of Systems Design at the Department of Chemical and Biochemical Engineering, Technical University of Denmark, and the director of the Computer Aided Product-Process Engineering Center (CAPEC). His research interests include the development of computer-aided methods and tools for modelling, property estimation and process-product synthesis and design. He received his BSc from Bangladesh University of Engineering and Technology in 1975, and his MSc in 1976 and PhD in 1980 from Imperial College London. He is the editor-in-chief of Computers and Chemical Engineering journal and Fellow of IChemE as well as AIChE. Product and process modelling; a wide range of case studies are covered Structural analysis of model systems; insights into structure and solvability Analysis of future developments; potential directions and significant research and development problems to be addressed



Modelling and Identification with Rational Orthogonal Basis Functions

Modelling and Identification with Rational Orthogonal Basis Functions Author Peter S.C. Heuberger
ISBN-10 185233956X
Release 2005-06-30
Pages 397
Download Link Click Here

Models of dynamical systems are of great importance in almost all fields of science and engineering and specifically in control, signal processing and information science. A model is always only an approximation of a real phenomenon so that having an approximation theory which allows for the analysis of model quality is a substantial concern. The use of rational orthogonal basis functions to represent dynamical systems and stochastic signals can provide such a theory and underpin advanced analysis and efficient modelling. It also has the potential to extend beyond these areas to deal with many problems in circuit theory, telecommunications, systems, control theory and signal processing. Modelling and Identification with Rational Orthogonal Basis Functions affords a self-contained description of the development of the field over the last 15 years, furnishing researchers and practising engineers working with dynamical systems and stochastic processes with a standard reference work.



Applied Methods and Techniques for Mechatronic Systems

Applied Methods and Techniques for Mechatronic Systems Author Lei Liu
ISBN-10 9783642363856
Release 2013-12-19
Pages 440
Download Link Click Here

Applied Methods and Techniques for Mechatronic Systems brings together the relevant studies in mechatronic systems with the latest research from interdisciplinary theoretical studies, computational algorithm development and exemplary applications. Readers can easily tailor the techniques in this book to accommodate their ad hoc applications. The clear structure of each paper, background - motivation - quantitative development (equations) - case studies/illustration/tutorial (curve, table, etc.) is also helpful. It is mainly aimed at graduate students, professors and academic researchers in related fields, but it will also be helpful to engineers and scientists from industry. Lei Liu is a lecturer at Huazhong University of Science and Technology (HUST), China; Quanmin Zhu is a professor at University of the West of England, UK; Lei Cheng is an associate professor at Wuhan University of Science and Technology, China; Yongji Wang is a professor at HUST; Dongya Zhao is an associate professor at China University of Petroleum.



Modelling and Control of Dynamic Systems Using Gaussian Process Models

Modelling and Control of Dynamic Systems Using Gaussian Process Models Author Juš Kocijan
ISBN-10 9783319210216
Release 2015-11-21
Pages 267
Download Link Click Here

This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.



Control System Design for Electrical Stimulation in Upper Limb Rehabilitation

Control System Design for Electrical Stimulation in Upper Limb Rehabilitation Author Chris Freeman
ISBN-10 9783319257068
Release 2015-10-28
Pages 176
Download Link Click Here

This book presents a comprehensive framework for model-based electrical stimulation (ES) controller design, covering the whole process needed to develop a system for helping people with physical impairments perform functional upper limb tasks such as eating, grasping and manipulating objects. The book first demonstrates procedures for modelling and identifying biomechanical models of the response of ES, covering a wide variety of aspects including mechanical support structures, kinematics, electrode placement, tasks, and sensor locations. It then goes on to demonstrate how complex functional activities of daily living can be captured in the form of optimisation problems, and extends ES control design to address this case. It then lays out a design methodology, stability conditions, and robust performance criteria that enable control schemes to be developed systematically and transparently, ensuring that they can operate effectively in the presence of realistic modelling uncertainty, physiological variation and measurement noise.



System Identification Environmental Modelling and Control System Design

System Identification  Environmental Modelling  and Control System Design Author Liuping Wang
ISBN-10 0857299743
Release 2011-10-20
Pages 648
Download Link Click Here

This book is dedicated to Prof. Peter Young on his 70th birthday. Professor Young has been a pioneer in systems and control, and over the past 45 years he has influenced many developments in this field. This volume comprises a collection of contributions by leading experts in system identification, time-series analysis, environmetric modelling and control system design – modern research in topics that reflect important areas of interest in Professor Young’s research career. Recent theoretical developments in and relevant applications of these areas are explored treating the various subjects broadly and in depth. The authoritative and up-to-date research presented here will be of interest to academic researcher in control and disciplines related to environmental research, particularly those to with water systems. The tutorial style in which many of the contributions are composed also makes the book suitable as a source of study material for graduate students in those areas.