**Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.**

Author | Eleanor G. Rieffel | |

ISBN-10 | 9780262015066 | |

Release | 2011-03-04 | |

Pages | 372 | |

Download Link | Click Here |

A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples. |

Author | Scott Aaronson | |

ISBN-10 | 9780521199568 | |

Release | 2013-03-14 | |

Pages | 370 | |

Download Link | Click Here |

Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics. |

Author | Meglicki | |

ISBN-10 | 9780262260978 | |

Release | 2008-08-01 | |

Pages | 448 | |

Download Link | Click Here |

This text offers an introduction to quantum computing, with a special emphasis on basic quantum physics, experiment, and quantum devices. Unlike many other texts, which tend to emphasize algorithms, Quantum Computing without Magic explains the requisite quantum physics in some depth, and then explains the devices themselves. It is a book for readers who, having already encountered quantum algorithms, may ask, "Yes, I can see how the algebra does the trick, but how can we actually do it?" By explaining the details in the context of the topics covered, this book strips the subject of the "magic" with which it is so often cloaked. Quantum Computing without Magic covers the essential probability calculus; the qubit, its physics, manipulation and measurement, and how it can be implemented using superconducting electronics; quaternions and density operator formalism; unitary formalism and its application to Berry phase manipulation; the biqubit, the mysteries of entanglement, nonlocality, separability, biqubit classification, and the Schroedinger's Cat paradox; the controlled-NOT gate, its applications and implementations; and classical analogs of quantum devices and quantum processes. Quantum Computing without Magic can be used as a complementary text for physics and electronic engineering undergraduates studying quantum computing and basic quantum mechanics, or as an introduction and guide for electronic engineers, mathematicians, computer scientists, or scholars in these fields who are interested in quantum computing and how it might fit into their research programs. |

Author | Phillip Kaye | |

ISBN-10 | 9780198570004 | |

Release | 2007 | |

Pages | 274 | |

Download Link | Click Here |

The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises. |

Author | Riley Tipton Perry | |

ISBN-10 | 9789814412131 | |

Release | 2012-07-11 | |

Pages | 256 | |

Download Link | Click Here |

Quantum computing — the application of quantum mechanics to information — represents a fundamental break from classical information and promises to dramatically increase a computer's power. Many difficult problems, such as the factorization of large numbers, have so far resisted attack by classical computers yet are easily solved with quantum computers. If they become feasible, quantum computers will end standard practices such as RSA encryption. Most of the books or papers on quantum computing require (or assume) prior knowledge of certain areas such as linear algebra or quantum mechanics. The majority of the currently-available literature is hard to understand for the average computer enthusiast or interested layman. This text attempts to teach quantum computing from the ground up in an easily readable way, providing a comprehensive tutorial that includes all the necessary mathematics, computer science and physics. Errata(s) Errata |

Author | Alexei Yu. Kitaev | |

ISBN-10 | 9780821832295 | |

Release | 2002 | |

Pages | 257 | |

Download Link | Click Here |

This book presents a concise introduction to an emerging and increasingly important topic, the theory of quantum computing. The development of quantum computing exploded in 1994 with the discovery of its use in factoring large numbers--an extremely difficult and time-consuming problem when using a conventional computer. In less than 300 pages, the authors set forth a solid foundation to the theory, including results that have not appeared elsewhere and improvements on existing works. The book starts with the basics of classical theory of computation, including NP-complete problems and the idea of complexity of an algorithm. Then the authors introduce general principles of quantum computing and pass to the study of main quantum computation algorithms: Grover's algorithm, Shor's factoring algorithm, and the Abelian hidden subgroup problem. In concluding sections, several related topics are discussed (parallel quantum computation, a quantum analog of NP-completeness, and quantum error-correcting codes). This is a suitable textbook for a graduate course in quantum computing. Prerequisites are very modest and include linear algebra, elements of group theory and probability, and the notion of an algorithm (on a formal or an intuitive level). The book is complete with problems, solutions, and an appendix summarizing the necessary results from number theory. |

Author | Noson S. Yanofsky | |

ISBN-10 | 9781139643900 | |

Release | 2008-08-11 | |

Pages | ||

Download Link | Click Here |

The multidisciplinary field of quantum computing strives to exploit some of the uncanny aspects of quantum mechanics to expand our computational horizons. Quantum Computing for Computer Scientists takes readers on a tour of this fascinating area of cutting-edge research. Written in an accessible yet rigorous fashion, this book employs ideas and techniques familiar to every student of computer science. The reader is not expected to have any advanced mathematics or physics background. After presenting the necessary prerequisites, the material is organized to look at different aspects of quantum computing from the specific standpoint of computer science. There are chapters on computer architecture, algorithms, programming languages, theoretical computer science, cryptography, information theory, and hardware. The text has step-by-step examples, more than two hundred exercises with solutions, and programming drills that bring the ideas of quantum computing alive for today's computer science students and researchers. |

Author | Colin P. Williams | |

ISBN-10 | 1846288878 | |

Release | 2010-12-07 | |

Pages | 717 | |

Download Link | Click Here |

By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. "Quantum computing" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers – and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking supposedly "unbreakable" codes, generating true random numbers, and communicating with messages that betray the presence of eavesdropping. This widely anticipated second edition of Explorations in Quantum Computing explains these burgeoning developments in simple terms, and describes the key technological hurdles that must be overcome to make quantum computers a reality. This easy-to-read, time-tested, and comprehensive textbook provides a fresh perspective on the capabilities of quantum computers, and supplies readers with the tools necessary to make their own foray into this exciting field. Topics and features: concludes each chapter with exercises and a summary of the material covered; provides an introduction to the basic mathematical formalism of quantum computing, and the quantum effects that can be harnessed for non-classical computation; discusses the concepts of quantum gates, entangling power, quantum circuits, quantum Fourier, wavelet, and cosine transforms, and quantum universality, computability, and complexity; examines the potential applications of quantum computers in areas such as search, code-breaking, solving NP-Complete problems, quantum simulation, quantum chemistry, and mathematics; investigates the uses of quantum information, including quantum teleportation, superdense coding, quantum data compression, quantum cloning, quantum negation, and quantum cryptography; reviews the advancements made towards practical quantum computers, covering developments in quantum error correction and avoidance, and alternative models of quantum computation. This text/reference is ideal for anyone wishing to learn more about this incredible, perhaps "ultimate," computer revolution. Dr. Colin P. Williams is Program Manager for Advanced Computing Paradigms at the NASA Jet Propulsion Laboratory, California Institute of Technology, and CEO of Xtreme Energetics, Inc. an advanced solar energy company. Dr. Williams has taught quantum computing and quantum information theory as an acting Associate Professor of Computer Science at Stanford University. He has spent over a decade inspiring and leading high technology teams and building business relationships with and Silicon Valley companies. Today his interests include terrestrial and Space-based power generation, quantum computing, cognitive computing, computational material design, visualization, artificial intelligence, evolutionary computing, and remote olfaction. He was formerly a Research Scientist at Xerox PARC and a Research Assistant to Prof. Stephen W. Hawking, Cambridge University. |

Author | Richard J. Lipton | |

ISBN-10 | 9780262028394 | |

Release | 2014-12-15 | |

Pages | 208 | |

Download Link | Click Here |

Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. |

Author | David McMahon | |

ISBN-10 | 0470181362 | |

Release | 2007-12-14 | |

Pages | 420 | |

Download Link | Click Here |

A self-contained treatment of the fundamentals of quantum computing This clear, practical book takes quantum computing out of the realm of theoretical physics and teaches the fundamentals of the field to students and professionals who have not had training in quantum computing or quantum information theory, including computer scientists, programmers, electrical engineers, mathematicians, physics students, and chemists. The author cuts through the conventions of typical jargon-laden physics books and instead presents the material through his unique "how-to" approach and friendly, conversational style. Readers will learn how to carry out calculations with explicit details and will gain a fundamental grasp of: * Quantum mechanics * Quantum computation * Teleportation * Quantum cryptography * Entanglement * Quantum algorithms * Error correction A number of worked examples are included so readers can see how quantum computing is done with their own eyes, while answers to similar end-of-chapter problems are provided for readers to check their own work as they learn to master the information. Ideal for professionals and graduate-level students alike, Quantum Computing Explained delivers the fundamentals of quantum computing readers need to be able to understand current research papers and go on to study more advanced quantum texts. |

Author | Arthur O. Pittenger | |

ISBN-10 | 9781461213901 | |

Release | 2012-12-06 | |

Pages | 140 | |

Download Link | Click Here |

In 1994 Peter Shor [65] published a factoring algorithm for a quantum computer that finds the prime factors of a composite integer N more efficiently than is possible with the known algorithms for a classical com puter. Since the difficulty of the factoring problem is crucial for the se curity of a public key encryption system, interest (and funding) in quan tum computing and quantum computation suddenly blossomed. Quan tum computing had arrived. The study of the role of quantum mechanics in the theory of computa tion seems to have begun in the early 1980s with the publications of Paul Benioff [6]' [7] who considered a quantum mechanical model of computers and the computation process. A related question was discussed shortly thereafter by Richard Feynman [35] who began from a different perspec tive by asking what kind of computer should be used to simulate physics. His analysis led him to the belief that with a suitable class of "quantum machines" one could imitate any quantum system. |

Author | Peter Wittek | |

ISBN-10 | 9780128010990 | |

Release | 2014-09-10 | |

Pages | 176 | |

Download Link | Click Here |

Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. Bridges the gap between abstract developments in quantum computing with the applied research on machine learning Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research |

Author | Masahito Hayashi | |

ISBN-10 | 9783662435021 | |

Release | 2014-08-22 | |

Pages | 332 | |

Download Link | Click Here |

This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols, this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint. |

Author | N. David Mermin | |

ISBN-10 | 1139466801 | |

Release | 2007-08-30 | |

Pages | ||

Download Link | Click Here |

In the 1990's it was realized that quantum physics has some spectacular applications in computer science. This book is a concise introduction to quantum computation, developing the basic elements of this new branch of computational theory without assuming any background in physics. It begins with an introduction to the quantum theory from a computer-science perspective. It illustrates the quantum-computational approach with several elementary examples of quantum speed-up, before moving to the major applications: Shor's factoring algorithm, Grover's search algorithm, and quantum error correction. The book is intended primarily for computer scientists who know nothing about quantum theory, but will also be of interest to physicists who want to learn the theory of quantum computation, and philosophers of science interested in quantum foundational issues. It evolved during six years of teaching the subject to undergraduates and graduate students in computer science, mathematics, engineering, and physics, at Cornell University. |

Author | Michael A. Nielsen | |

ISBN-10 | 9781139495486 | |

Release | 2010-12-09 | |

Pages | ||

Download Link | Click Here |

One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering. |

Author | David A. B. Miller | |

ISBN-10 | 9781139471275 | |

Release | 2008-04-21 | |

Pages | 574 | |

Download Link | Click Here |

If you need a book that relates the core principles of quantum mechanics to modern applications in engineering, physics, and nanotechnology, this is it. Students will appreciate the book's applied emphasis, which illustrates theoretical concepts with examples of nanostructured materials, optics, and semiconductor devices. The many worked examples and more than 160 homework problems help students to problem solve and to practise applications of theory. Without assuming a prior knowledge of high-level physics or classical mechanics, the text introduces Schrödinger's equation, operators, and approximation methods. Systems, including the hydrogen atom and crystalline materials, are analyzed in detail. More advanced subjects, such as density matrices, quantum optics, and quantum information, are also covered. Practical applications and algorithms for the computational analysis of simple structures make this an ideal introduction to quantum mechanics for students of engineering, physics, nanotechnology, and other disciplines. Additional resources available from www.cambridge.org/9780521897839. |

Author | Mingsheng Ying | |

ISBN-10 | 9780128025468 | |

Release | 2016-03-28 | |

Pages | 372 | |

Download Link | Click Here |

Foundations of Quantum Programming discusses how new programming methodologies and technologies developed for current computers can be extended to exploit the unique power of quantum computers, which promise dramatic advantages in processing speed over currently available computer systems. Governments and industries around the globe are now investing vast amounts of money with the expectation of building practical quantum computers. Drawing upon years of experience and research in quantum computing research and using numerous examples and illustrations, Mingsheng Ying has created a very useful reference on quantum programming languages and important tools and techniques required for quantum programming, making the book a valuable resource for academics, researchers, and developers. Demystifies the theory of quantum programming using a step-by-step approach Covers the interdisciplinary nature of quantum programming by providing examples from many different fields including, engineering, computer science, medicine, and life sciences Includes techniques and tools to solve complex control flow patterns and synchronize computations Presents a coherent and self-contained treatment that will be valuable for academics and industrial researchers and developers |