**Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.**

Author | Brian C. Hall | |

ISBN-10 | 9781461471165 | |

Release | 2013-06-19 | |

Pages | 554 | |

Download Link | Click Here |

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization. |

Author | Leon Armenovich Takhtadzhi͡an | |

ISBN-10 | 9780821846308 | |

Release | 2008 | |

Pages | 387 | |

Download Link | Click Here |

This book provides a comprehensive treatment of quantum mechanics from a mathematics perspective and is accessible to mathematicians starting with second-year graduate students. It addition to traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin, and it introduces the reader to functional methods in quantum mechanics. This includes the Feynman path integral approach to quantum mechanics, integration in functional spaces, the relation between Feynman and Wiener integrals, Gaussian integration and regularized determinants of differential operators, fermion systems and integration over anticommuting (Grassmann) variables, supersymmetry and localization in loop spaces, and supersymmetric derivation of the Atiyah-Singer formula for the index of the Dirac operator. Prior to this book, mathematicians could find these topics only in physics textbooks and in specialized literature. This book is written in a concise style with careful attention to precise mathematics formulation of methods and results.Numerous problems, from routine to advanced, help the reader to master the subject. In addition to providing a fundamental knowledge of quantum mechanics, this book could also serve as a bridge for studying more advanced topics in quantum physics, among them quantum field theory. Prerequisites include standard first-year graduate courses covering linear and abstract algebra, topology and geometry, and real and complex analysis. |

Author | Gerald Teschl | |

ISBN-10 | 9780821846605 | |

Release | 2009 | |

Pages | 305 | |

Download Link | Click Here |

Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints). |

Author | Keith Hannabuss | |

ISBN-10 | 0191588733 | |

Release | 1997-03-20 | |

Pages | 394 | |

Download Link | Click Here |

This book provides an introduction to quantum theory primarily for students of mathematics. Although the approach is mainly traditional the discussion exploits ideas of linear algebra, and points out some of the mathematical subtleties of the theory. Amongst the less traditional topics are Bell's inequalities, coherent and squeezed states, and introductions to group representation theory. Later chapters discuss relativistic wave equations and elementary particle symmetries from a group theoretical standpoint rather than the customary Lie algebraic approach. This book is intended for the later years of an undergraduate course or for graduates. It assumes a knowledge of basic linear algebra and elementary group theory, though for convenience these are also summarized in an appendix. |

Author | L. D. Faddeev | |

ISBN-10 | 9780821846995 | |

Release | 2009 | |

Pages | 234 | |

Download Link | Click Here |

Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework. |

Author | G. B. Folland | |

ISBN-10 | 9780821847053 | |

Release | 2008-08-26 | |

Pages | 325 | |

Download Link | Click Here |

Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam-Weinberg model of electromagnetic and weak interactions. |

Author | Jonathan Dimock | |

ISBN-10 | 9781139497480 | |

Release | 2011-02-03 | |

Pages | ||

Download Link | Click Here |

Explaining the concepts of quantum mechanics and quantum field theory in a precise mathematical language, this textbook is an ideal introduction for graduate students in mathematics, helping to prepare them for further studies in quantum physics. The textbook covers topics that are central to quantum physics: non-relativistic quantum mechanics, quantum statistical mechanics, relativistic quantum mechanics and quantum field theory. There is also background material on analysis, classical mechanics, relativity and probability. Each topic is explored through a statement of basic principles followed by simple examples. Around 100 problems throughout the textbook help readers develop their understanding. |

Author | Frederick W. Byron | |

ISBN-10 | 9780486135069 | |

Release | 2012-04-26 | |

Pages | 672 | |

Download Link | Click Here |

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography. |

Author | Peter Bongaarts | |

ISBN-10 | 9783319095615 | |

Release | 2014-12-01 | |

Pages | 445 | |

Download Link | Click Here |

This book was inspired by the general observation that the great theories of modern physics are based on simple and transparent underlying mathematical structures – a fact not usually emphasized in standard physics textbooks – which makes it easy for mathematicians to understand their basic features. It is a textbook on quantum theory intended for advanced undergraduate or graduate students: mathematics students interested in modern physics, and physics students who are interested in the mathematical background of physics and are dissatisfied with the level of rigor in standard physics courses. More generally, it offers a valuable resource for all mathematicians interested in modern physics, and all physicists looking for a higher degree of mathematical precision with regard to the basic concepts in their field. |

Author | F. Strocchi | |

ISBN-10 | 9789812835222 | |

Release | 2008 | |

Pages | 180 | |

Download Link | Click Here |

Arising out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students, this book formulates the mathematical structure of QM in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables. |

Author | Jirí Blank | |

ISBN-10 | 9781402088704 | |

Release | 2008-09-24 | |

Pages | 664 | |

Download Link | Click Here |

The new edition of this book detailing the theory of linear-Hilbert space operators and their use in quantum physics contains two new chapters devoted to properties of quantum waveguides and quantum graphs. The bibliography contains 130 new items. |

Author | Masahito Hayashi | |

ISBN-10 | 9783662497258 | |

Release | 2016-11-03 | |

Pages | 636 | |

Download Link | Click Here |

This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics – all of which are addressed here – made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions. |

Author | George W. Mackey | |

ISBN-10 | 9780486154473 | |

Release | 2013-12-31 | |

Pages | 160 | |

Download Link | Click Here |

This graduate-level text introduces fundamentals of classical mechanics; surveys basics of quantum mechanics; and concludes with a look at group theory and quantum mechanics of the atom. 1963 edition. |

Author | R.K. Sachs | |

ISBN-10 | 9781461299035 | |

Release | 2012-12-06 | |

Pages | 292 | |

Download Link | Click Here |

This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics). |

Author | Stephen J. Gustafson | |

ISBN-10 | 9783642218668 | |

Release | 2011-09-24 | |

Pages | 382 | |

Download Link | Click Here |

The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory. |

Author | V.I. Arnol'd | |

ISBN-10 | 9781475720631 | |

Release | 2013-04-09 | |

Pages | 520 | |

Download Link | Click Here |

This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance. |

Author | John David Jackson | |

ISBN-10 | 9780486138817 | |

Release | 2012-03-08 | |

Pages | 112 | |

Download Link | Click Here |

This concise text for advanced undergraduates and graduate students covers eigenvalue problems, orthogonal functions and expansions, the Sturm-Liouville theory and linear operators on functions, and linear vector spaces. 1962 edition. |