Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Quantum Triangulations

Quantum Triangulations Author Mauro Carfora
ISBN-10 9783642244407
Release 2012-01-14
Pages 284
Download Link Click Here

Research on polyhedral manifolds often points to unexpected connections between very distinct aspects of Mathematics and Physics. In particular triangulated manifolds play quite a distinguished role in such settings as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, and critical phenomena. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is rather often a consequence of an underlying structure which naturally calls into play non-trivial aspects of representation theory, of complex analysis and topology in a way which makes manifest the basic geometric structures of the physical interactions involved. Yet, in most of the existing literature, triangulated manifolds are still merely viewed as a convenient discretization of a given physical theory to make it more amenable for numerical treatment. The motivation for these lectures notes is thus to provide an approachable introduction to this topic, emphasizing the conceptual aspects, and probing, through a set of cases studies, the connection between triangulated manifolds and quantum physics to the deepest. This volume addresses applied mathematicians and theoretical physicists working in the field of quantum geometry and its applications.

Quantum Invariants of Knots and 3 Manifolds

Quantum Invariants of Knots and 3 Manifolds Author Vladimir G. Turaev
ISBN-10 9783110435221
Release 2016-07-11
Pages 608
Download Link Click Here

The third edition of this monograph provides a systematic treatment of topological quantum field theories in three dimensions, inspired by the discovery of the Jones polynomial of knots, the Witten-Chern-Simons field theory, and the theory of quantum groups. The author, one of the leading experts in the subject, gives a rigorous and self-contained exposition of fundamental algebraic and topological concepts that emerged in this theory.

Quantum Triangulations

Quantum Triangulations Author Mauro Carfora
ISBN-10 9783319679372
Release 2017-11-27
Pages 392
Download Link Click Here

This book discusses key conceptual aspects and explores the connection between triangulated manifolds and quantum physics, using a set of case studies ranging from moduli space theory to quantum computing to provide an accessible introduction to this topic. Research on polyhedral manifolds often reveals unexpected connections between very distinct aspects of mathematics and physics. In particular, triangulated manifolds play an important role in settings such as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, critical phenomena and complex systems. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is also often a consequence of an underlying structure that naturally calls into play non-trivial aspects of representation theory, complex analysis and topology in a way that makes the basic geometric structures of the physical interactions involved clear. This second edition further emphasizes the essential role that triangulations play in modern mathematical physics, with a new and highly detailed chapter on the geometry of the dilatonic non-linear sigma model and its subtle and many-faceted connection with Ricci flow theory. This connection is treated in depth, pinpointing both the mathematical and physical aspects of the perturbative embedding of the Ricci flow in the renormalization group flow of non-linear sigma models. The geometry of the dilaton field is discussed from a novel standpoint by using polyhedral manifolds and Riemannian metric measure spaces, emphasizing their role in connecting non-linear sigma models’ effective action to Perelman’s energy-functional. No other published account of this matter is so detailed and informative. This new edition also features an expanded appendix on Riemannian geometry, and a rich set of new illustrations to help the reader grasp the more difficult points of the theory. The book offers a valuable guide for all mathematicians and theoretical physicists working in the field of quantum geometry and its applications.

Mirror Symmetry and Algebraic Geometry

Mirror Symmetry and Algebraic Geometry Author David A. Cox
ISBN-10 9780821821275
Release 1999
Pages 469
Download Link Click Here

Mathematicians wanting to get into the field ... will find a very well written and encyclopaedic account of the mathematics which was needed in, and was developed from, what now might be termed classical mirror symmetry. --Bulletin of the LMS The book is highly recommended for everyone who wants to learn about the fascinating recent interplay between physics and mathematics. --Mathematical Reviews Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is a completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem.

Mirror Symmetry

Mirror Symmetry Author Kentaro Hori
ISBN-10 9780821829554
Release 2003
Pages 929
Download Link Click Here

Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar Vafa invariants. This book aims to give a single, cohesive treatment of mirror symmetry from both the mathematical and physical viewpoint. Parts 1 and 2 develop the necessary mathematical and physical background ``from scratch,'' and are intended for readers trying to learn across disciplines. The treatment is focussed, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topics in mirror symmetry, including the role of D-branes in the context of mirror symmetry, and some of their applications in physics and mathematics: topological strings and large $N$ Chern-Simons theory; geometric engineering; mirror symmetry at higher genus; Gopakumar-Vafa invariants; and Kontsevich's formulation of the mirror phenomenon as an equivalence of categories. This book grew out of an intense, month-long course on mirror symmetry at Pine Manor College, sponsored by the Clay Mathematics Institute. The lecturers have tried to summarize this course in a coherent, unified text.

Physics Geometry and Topology

Physics  Geometry and Topology Author H.C. Lee
ISBN-10 9781461538028
Release 2012-12-06
Pages 681
Download Link Click Here

The Banff NATO Summer School was held August 14-25, 1989 at the Banff Cen tre, Banff, Albert, Canada. It was a combination of two venues: a summer school in the annual series of Summer School in Theoretical Physics spon sored by the Theoretical Physics Division, Canadian Association of Physi cists, and a NATO Advanced Study Institute. The Organizing Committee for the present school was composed of G. Kunstatter (University of Winnipeg), H.C. Lee (Chalk River Laboratories and University of Western Ontario), R. Kobes (University of Winnipeg), D.l. Toms (University of Newcastle Upon Tyne) and Y.S. Wu (University of Utah). Thanks to the group of lecturers (see Contents) and the timeliness of the courses given, the school, entitled PHYSICS, GEOMETRY AND TOPOLOGY, was popular from the very outset. The number of applications outstripped the 90 places of accommodation reserved at the Banff Centre soon after the school was announced. As the eventual total number of participants was increased to 170, it was still necessary to tum away many deserving applicants. In accordance with the spirit of the school, the geometrical and topologi cal properties in each of the wide ranging topics covered by the lectures were emphasized. A recurring theme in a number of the lectures is the Yang-Baxter relation which characterizes a very large class of integrable systems including: many state models, two-dimensional conformal field theory, quantum field theory and quantum gravity in 2 + I dimensions.

New Paths Towards Quantum Gravity

New Paths Towards Quantum Gravity Author Bernhelm Booß-Bavnbek
ISBN-10 9783642118975
Release 2010-07-23
Pages 350
Download Link Click Here

Aside from the obvious statement that it should be a theory capable of unifying general relativity and quantum field theory, not much is known about the true nature of quantum gravity. New ideas - and there are many of them for this is an exciting field of research - often diverge to a degree where it seems impossible to decide in which of the many possible direction(s) the ongoing developments should be further sustained. The division of the book in two (overlapping) parts reflects the duality between the physical vision and the mathematical construction. The former is represented by tutorial reviews on non-commutative geometry, on space-time discretization and renormalization and on gauge field path integrals. The latter one by lectures on cohomology, on stochastic geometry and on mathematical tools for the effective action in quantum gravity. The book will benefit everyone working or entering the field of quantum gravity research.

Random Surfaces and Quantum Gravity

Random Surfaces and Quantum Gravity Author Orlando Alvarez
ISBN-10 9781461537724
Release 2013-03-09
Pages 407
Download Link Click Here

The Cargese Workshop Random Surfaces and Quantum Gravity was held from May 27 to June 2, 1990. Little was known about string theory in the non-perturbative regime before Oetober 1989 when non-perturbative equations for the string partition functions were found by using methods based on the random triangulations of surfaees. This set of methods pro vides a deseription of non-eritical string theory or equivalently of the coupling of matter fields to quantum gravity in two dimensions. The Cargese meeting was very successful in that it provided the first opportunity to gather most of the active workers in the field for a fuH week of lectures and extensive informal discussions about these exeiting new developments. The main results were reviewed, recent advances were explained, new results and conjectures (which appear for the first time in these proceedings) were presented and discussed. Among the most important topics discussed at the workshop were: The relation of KdV theory to loop equations and the Virasoro algebra, new results in Liouville field theory, effective (1 + 1) dimensional theory for 2 - D quantum gravity coupled to c = 1 matter and its fermionization, proposal for a new geometrical interpretation of the string equation and possible definition of quantum Riemann surfaces, discussion of the string equation for the multi-matrix models, links with topological field theories of gravity, issues in using target space supersymmetry to define good theories, definition of the partition function via analytic continuation, new models of random surfaces

The Large N Expansion in Quantum Field Theory and Statistical Physics

The Large N Expansion in Quantum Field Theory and Statistical Physics Author E Brézin
ISBN-10 9789814506632
Release 1993-08-31
Pages 1114
Download Link Click Here

Readership: High energy physicists and condensed matter physicists. keywords:Quantum Field Theory;Spontaneous Symmetry Breaking;Phase Transitions;Gauge Theories;Topological Expansions;Matrix Models

Quantum Nonlocality and Reality

Quantum Nonlocality and Reality Author Mary Bell
ISBN-10 9781107104341
Release 2016-09-30
Pages 448
Download Link Click Here

A collaboration between distinguished physicists and philosophers of physics, this important anthology surveys the deep implications of Bell's nonlocality theorem.

Mathematical Aspects of Quantum Field Theories

Mathematical Aspects of Quantum Field Theories Author Damien Calaque
ISBN-10 9783319099491
Release 2015-01-06
Pages 556
Download Link Click Here

Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.

Advanced Quantum Mechanics

Advanced Quantum Mechanics Author Rainer Dick
ISBN-10 9783319256757
Release 2016-07-01
Pages 692
Download Link Click Here

In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of quantum electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquired an understanding of basic quantum mechanics and classical field theory, canonical field quantization is easy. Furthermore, the integrated discussion of transition a mplitudes naturally leads to the notions of transition probabilities, decay rates, absorption cross sections and scattering cross sections, which are important for all experimental techniques that use photon probes. Quantization is first discussed for the Schrödinger field before the relativistic Maxwell, Klein-Gordon and Dirac fields are quantized. Quantized Schrödinger field theory is not only important for condensed matter physics and materials science, but also provides the easiest avenue to general field quantization and is therefore also useful for students with an interest in nuclear and particle physics. The quantization of the Maxwell field is performed in Coulomb gauge. This is the appropriate and practically most useful quantization procedure in condensed matter physics, chemistry, and materials science because it naturally separates the effects of Coulomb interactions, exchange interactions, and photon scattering. The appendices contain additional material that is usually not found in standard quantum mechanics textbooks, including a completeness proof for eigenfunctions of one-dimensional Sturm-Liouville problems, logarithms of matrices, and Green’s functions in different dimensions.

Topological Geometrodynamics

Topological Geometrodynamics Author Matti Pitkanen
ISBN-10 9781681081793
Release 2016-03-03
Pages 920
Download Link Click Here

Topological geometrodynamics (TGD) is a modification of the theory of general relativity inspired by the problems related to the definition of inertial and gravitational energies in the earlier hypotheses. TGD is also a generalization of super string models. TGD brings forth an elegant theoretical projection of reality and builds upon the work by renowned scientists (Wheeler, Feynman, Penrose, Einstein, Josephson to name a few). In TGD, Physical space-time planes are visualized as four-dimensional surfaces in a certain 8-dimensional space (H). The choice of H is fixed by symmetries of standard model and leads to a geometric mapping of known classical fields and elementary particle numbers. TGD differs from Einstein’s geometrodynamics in the way space-time planes or ‘sheets’ are lumped together. Extending the theory based on fusing number concepts implies a further generalisation of the space-time concept allowing the identification of space-time correlates of cognition and intentionality. Additionally, zero energy ontology forces an extension of quantum measurement theory to a theory of consciousness and a hierarchy of phases is identified. Dark matter is thus predicted with far reaching implications for the understanding of consciousness and living systems. Therefore, it sets a solid foundation for modeling our universe in geometric terms. Topological Geometrodynamics: An Overview explains basic and advanced concepts about TGD. The book covers introductory information and classical TGD concepts before delving into twistor-space theory, particle physics, infinite-dimensional spinor geometry, generalized number theory, Planck constants, and the applications of TGD theory in research. The book is a valuable guide to TDG theory for researchers and advanced graduates in theoretical physics and cosmology.

Quantum Gravity Quantum Cosmology and Lorentzian Geometries

Quantum Gravity  Quantum Cosmology and Lorentzian Geometries Author Giampiero Esposito
ISBN-10 9783662144954
Release 2013-11-11
Pages 328
Download Link Click Here

This book is aimed at theoretical and mathematical physicists and mathematicians interested in modern gravitational physics. I have thus tried to use language familiar to readers working on classical and quantum gravity, paying attention both to difficult calculations and to existence theorems, and discussing in detail the current literature. The first aim of the book is to describe recent work on the problern of boundary conditions in one-loop quantum cosmology. The motivation of this research was to under stand whether supersymmetric theories are one-loop finite in the presence of boundaries, with application to the boundary-value problems occurring in quantum cosmology. Indeed, higher-loop calculations in the absence of boundaries are already available in the litera ture, showing that supergravity is not finite. I believe, however, that one-loop calculations in the presence of boundaries are more fundamental, in that they provide a more direct check of the inconsistency of Supersymmetrie quantum cosmology from the perturbative point of view. It therefore appears that higher-order calculations are not strictly needed, if the one-loop test already yields negative results. Even though the question is not yet settled, this research has led to many interesting, new applications of areas of theoretical and mathematical physics such as twistor theory in flat space, self-adjointness theory, the generalized lliemann zeta-function, and the theory of boundary counterterms in super gravity.

Dirichlet Branes and Mirror Symmetry

Dirichlet Branes and Mirror Symmetry Author
ISBN-10 9780821838488
Release 2009
Pages 681
Download Link Click Here

Research in string theory over the last several decades has yielded a rich interaction with algebraic geometry. In 1985, the introduction of Calabi-Yau manifolds into physics as a way to compactify ten-dimensional space-time has led to exciting cross-fertilization between physics and mathematics, especially with the discovery of mirror symmetry in 1989. A new string revolution in the mid-1990s brought the notion of branes to the forefront. As foreseen by Kontsevich, these turned out to have mathematical counterparts in the derived category of coherent sheaves on an algebraic variety and the Fukaya category of a symplectic manifold. This has led to exciting new work, including the Strominger-Yau-Zaslow conjecture, which used the theory of branes to propose a geometric basis for mirror symmetry, the theory of stability conditions on triangulated categories, and a physical basis for the McKay correspondence. These developments have led to a great deal of new mathematical work. One difficulty in understanding all aspects of this work is that it requires being able to speak two different languages, the language of string theory and the language of algebraic geometry. The 2002 Clay School on Geometry and String Theory set out to bridge this gap, and this monograph builds on the expository lectures given there to provide an up-to-date discussion including subsequent developments. A natural sequel to the first Clay monograph on Mirror Symmetry, it presents the new ideas coming out of the interactions of string theory and algebraic geometry in a coherent logical context. We hope it will allow students and researchers who are familiar with the language of one of the two fields to gain acquaintance with the language of the other. The book first introduces the notion of Dirichlet brane in the context of topological quantum field theories, and then reviews the basics of string theory. After showing how notions of branes arose in string theory, it turns to an introduction to the algebraic geometry, sheaf theory, and homological algebra needed to define and work with derived categories. The physical existence conditions for branes are then discussed and compared in the context of mirror symmetry, culminating in Bridgeland's definition of stability structures, and its applications to the McKay correspondence and quantum geometry. The book continues with detailed treatments of the Strominger-Yau-Zaslow conjecture, Calabi-Yau metrics and homological mirror symmetry, and discusses more recent physical developments. This book is suitable for graduate students and researchers with either a physics or mathematics background, who are interested in the interface between string theory and algebraic geometry.

Supersymmetry for Mathematicians

Supersymmetry for Mathematicians Author V. S. Varadarajan
ISBN-10 9780821835746
Release 2004
Pages 300
Download Link Click Here

Supersymmetry has been the object of study by theoretical physicists since the early 1970's. In recent years it has attracted the interest of mathematicians because of its novelty, and because of significance, both in mathematics and physics, of the main issues it raises. This book presents the foundations of supersymmetry to the mathematically minded reader in a cogent and self-contained manner. It begins with a brief introduction to the physical foundations of the theory, especially the classification of relativistic particles and their wave equations, such as the equations of Dirac and Weyl. It then continues the development of the theory of supermanifolds stressing the analogy with the Grothendieck theory of schemes. All the super linear algebra needed for the book is developed here and the basic theorems are established: differential and integral calculus in supermanifolds, Frobenius theorem, foundations of the theory of super Lie groups, and so on. A special feature of the book is the treatment in depth of the theory of spinors in all dimensions and signatures, which is the basis of all developments of supergeometry both in physics and mathematics, especially in quantum field theory and supergravity.

Approaches to Quantum Gravity

Approaches to Quantum Gravity Author Daniele Oriti
ISBN-10 9780521860451
Release 2009-03-05
Pages 583
Download Link Click Here

Containing contributions from leading researchers in this field, this book provides a complete overview of this field from the frontiers of theoretical physics research for graduate students and researchers. It introduces the most current approaches to this problem, and reviews their main achievements.