Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Recent Advances in Thermochemical Conversion of Biomass

Recent Advances in Thermochemical Conversion of Biomass Author Ashok Pandey
ISBN-10 9780444632906
Release 2015-01-28
Pages 504
Download Link Click Here

This book provides general information and data on one of the most promising renewable energy sources: biomass for its thermochemical conversion. During the last few years, there has been increasing focus on developing the processes and technologies for the conversion of biomass to liquid and gaseous fuels and chemicals, in particular to develop low-cost technologies. This book provides date-based scientific information on the most advanced and innovative processing of biomass as well as the process development elements on thermochemical processing of biomass for the production of biofuels and bio-products on (biomass-based biorefinery). The conversion of biomass to biofuels and other value-added products on the principle biorefinery offers potential from technological perspectives as alternate energy. The book covers intensive R&D and technological developments done during the last few years in the area of renewable energy utilizing biomass as feedstock and will be highly beneficial for the researchers, scientists and engineers working in the area of biomass-biofuels- biorefinery. Provides the most advanced and innovative thermochemical conversion technology for biomass Provides information on large scales such as thermochemical biorefinery Useful for researchers intending to study scale up Serves as both a textbook for graduate students and a reference book for researchers Provides information on integration of process and technology on thermochemical conversion of biomass



Advances in Thermochemical Biomass Conversion

Advances in Thermochemical Biomass Conversion Author A.V. Bridgwater
ISBN-10 9789401113366
Release 2013-04-17
Pages 1734
Download Link Click Here

This book provides an account of the state-of-the-art in thermochemical biomass conversion and arises from the third conference in a series sponsored by the International Energy Agency's Bioenergy Agreement. Fundamental and applied research topics are included, reflecting recent advances as well as demonstration and commercial innovation.



Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals

Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals Author Mark Crocker
ISBN-10 9781849732260
Release 2010-09-10
Pages 532
Download Link Click Here

There is increasing recognition that low-cost, high capacity processes for the conversion of biomass into fuels and chemicals are essential for expanding the utilization of carbon neutral processes, reducing dependency on fossil fuel resources, and increasing rural income. While much attention has focused on the use of biomass to produce ethanol via fermentation, high capacity processes are also required for the production of hydrocarbon fuels and chemicals from lignocellulosic biomass. In this context, this book provides an up-to-date overview of the thermochemical methods available for biomass conversion to liquid fuels and chemicals. In addition to traditional conversion technologies such as fast pyrolysis, new developments are considered, including catalytic routes for the production of liquid fuels from carbohydrates and the use of ionic liquids for lignocellulose utilization. The individual chapters, written by experts in the field, provide an introduction to each topic, as well as describing recent research developments.



Biomass Processing Conversion and Biorefinery

Biomass Processing  Conversion  and Biorefinery Author Bo Zhang
ISBN-10 1626183465
Release 2013-01-01
Pages 457
Download Link Click Here

Biomass presents an attractive source for the production of fuels and chemicals, mainly due to the concerns over the depleting fossil fuel, growing awareness of environmental issues associated with fossil fuel consumption, and increasing world energy demand. Biomass resources include agricultural and forest residues, energy crops, livestock residues as well as municipal solid waste. These biomass resources are first processed into a conversion-friendly form, followed by the transformation to a wide range of energy and/or chemical products using two primary biorefinery platforms: biochemical and thermochemical. This book covers the most recent advances in biomass processing, biochemical and thermochemical conversion technologies, and thus, serves as a useful reference to agriculture engineers, chemical engineers, biotechnology engineers and engineering students. The contents of the book are divided into three sections: biomass overview and processing, biomass thermochemical and biochemical conversion technologies, and integrated biorefinery processes.



Developments in Thermochemical Biomass Conversion

Developments in Thermochemical Biomass Conversion Author A.V. Bridgwater
ISBN-10 9789400915596
Release 2013-11-21
Pages 1647
Download Link Click Here

There have been many developments in the science and technology of thermo chemical biomass conversion since the previous conference on Advances in Thermochemical Biomass Conversion in Interlaken, Switzerland, in 1992. This fourth conference again covers all aspects of thermal biomass conversion systems from fundamental research through applied research and development to demon stration and commercial applications to reflect the progress made in the last four years. All aspects of bioenergy systems are covered from pretreatment through to end-user applications with increased consideration paid to the environmental benefits and problems of implementing bio-energy systems. There was an excellent response with over 200 papers offered and over 180 delegates from 29 countries attending the conference. The programme was divided into five main areas covering pyrolysis, pretreatment, gasification, combustion and system studies and this division is reflected in the structure of these conference proceedings. Each main section was preceded by a state-of-the-art review to provide a focus for the ensuing presentations and an authoritative reference. All the papers included have been subject to a full peer review process. As with any international conference, an important aim was to exchange ideas and discuss problems with fellow researchers, as well as to hear about the latest research and development and applications. A workshop programme was included to encourage this interaction in areas of interest selected by participants. The resul tant workshop reports provide a summary of topical problems and opportunities.



Waste Biorefinery

Waste Biorefinery Author Thallada Bhaskar
ISBN-10 9780444639936
Release 2018-04-13
Pages 890
Download Link Click Here

Waste Biorefinery: Potential and Perspectives offers data-based information on the most cutting-edge processes for the utilisation of biogenic waste to produce biofuels, energy products, and biochemicals – a critical aspect of biorefinery. The book explores recent developments in biochemical and thermo-chemical methods of conversion and the potential generated by different kinds of biomass in more decentralized biorefineries. Additionally, the book discusses the move from 200 years of raw fossil materials to renewable resources and how this shift is accompanied by fundamental changes in industrial manufacturing technologies (from chemistry to biochemistry) and in logistics and manufacturing concepts (from petrochemical refineries to biorefineries). Waste Biorefinery: Potential and Perspectives designs concepts that enable modern biorefineries to utilize all types of biogenic wastes, and to integrate processes that convert byproduct streams to high-value products, achieving higher cost benefits. This book is an essential resource for researchers and students studying biomass, biorefineries, and biofuels/products/processes, as well as chemists, biochemical/chemical engineers, microbiologists, and biotechnologists working in industries and government agencies. Details the most advanced and innovative methods for biomass conversion Covers biochemical and thermo-chemical processes as well as product development Discusses the integration of technologies to produce bio-fuels, energy products, and biochemicals Illustrates specific applications in numerous case studies for reference and teaching purposes



Thermochemical Process Engineering

Thermochemical Process Engineering Author
ISBN-10 9780128099049
Release 2016-11-24
Pages 414
Download Link Click Here

Thermochemical Process Engineering, the latest edition in the Advances in Chemical Engineering, provides up-to-date information, comprehensively presenting updates in a systematic fashion that has made the series of great importance to organic chemists, polymer chemists, and many biological scientists since its inception in 1960. The series includes contributions from established authorities in the field who combine descriptive chemistry and mechanistic insight to create an understanding on how the chemistry drives the properties. Contains reviews by leading authorities in their respective areas Presents up-to-date reviews of the latest techniques in the modeling of catalytic processes Includes a broad mix of US and European authors, as well as academic, industrial, and research institute perspectives Provides discussions on the connections between computation and experimental methods



Advances in Bioenergy

Advances in Bioenergy Author
ISBN-10 9780128155349
Release 2018-06-18
Pages 224
Download Link Click Here

Advances in Bioenergy, Volume Three, is a new series that provides both principles and recent developments in various kinds of bioenergy technologies, including feedstock development, conversion technologies, energy and economics, and environmental analysis. The series uniquely provides the fundamentals of these technologies, along with reviews that will be invaluable for students, with specific chapters in this release covering Foam formation in anaerobic digesters, Catalytic Conversion of Biogas to Syngas via dry reforming process, Phosphorus removal and recovery from anaerobic digestion residues, Biological Hydrogen Production from Renewable Resources by Photo-fermentation, Conversion of lignocellulosic biomass into platform chemicals for biobased polyurethane application, and more. Written and edited by a world leading scientist in the area of bioenergy and bioproducts Includes both principles and recent developments within bioenergy technologies Covers the fundamentals of the technologies and recent reviews



Direct Thermochemical Liquefaction for Energy Applications

Direct Thermochemical Liquefaction for Energy Applications Author Lasse Rosendahl
ISBN-10 9780081010259
Release 2017-11-14
Pages 380
Download Link Click Here

Direct Thermochemical Liquefaction for Energy Applications presents the state-of-the-art of the value chains associated with these biomass conversion technologies. It covers multiple feedstock availability and feedstock composition impact on process chemistry and product quality and composition. Expert authors from around the world explore co-processing benefits, process parameters, implementation and scaling, upgrading to drop-in liquid biofuels or integration into existing petrochemical refinery infrastructure. Finally, these topics are put into a sustainability perspective by establishing an LCA framework for this type of process. Its focus on implementation based on the most comprehensive knowledge makes this book particularly useful for researchers and graduate students from all sorts of background working in the field of biomass and biofuels. It is also a valuable reference for engineers working to commercialize DTL technologies, engineering specialists designing process equipment, refinery professionals and developers. Focuses on implementation and scaling of direct thermochemical liquefaction technologies for biomass conversion into biofuels Covers the state-of-the-art of the technologies, as well as technical and sustainability implementation aspects Includes new approaches and concepts developed around the world within the different DTL technologies



Application of Hydrothermal Reactions to Biomass Conversion

Application of Hydrothermal Reactions to Biomass Conversion Author Fangming Jin
ISBN-10 9783642544583
Release 2014-04-11
Pages 409
Download Link Click Here

This book reviews the recent advances in hydrothermal conversion of biomass into chemicals and fuels, and consists of 15 chapters. It introduces the properties of high-temperature water, the merits of hydrothermal conversion of biomass, and some novel hydrothermal conversion processes, mainly including hydrothermal production of value-added products, hydrothermal gasification, hydrothermal liquefaction and hydrothermal carbonization. This book introduces a new concept for counteracting the imbalance in the carbon cycle, which is caused by the rapid consumption of fossil fuels in anthropogenic activities in combination with the slow formation of fossil fuels. Accordingly, the book is useful in conveying a fundamental understanding of hydrothermal conversion of biomass in the carbon cycle so that a contribution can be made to achieving sustainable energy and environment. It is also interesting to a wide readership in various fields including chemical, geologic and environmental science and engineering. Fangming Jin is a Distinguished Professor at the School of Environmental Science & Engineering, Shanghai Jiao Tong University, China



Bioenergy Research Advances and Applications

Bioenergy Research  Advances and Applications Author Vijai G. Gupta
ISBN-10 9780444595645
Release 2013-12-05
Pages 500
Download Link Click Here

Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each



Progress in Thermochemical Biomass Conversion

Progress in Thermochemical Biomass Conversion Author A. Bridgwater
ISBN-10 9780470694848
Release 2008-04-30
Pages 1744
Download Link Click Here

This book is for chemical engineers, fuel technologists, agricultural engineers and chemists in the world-wide energy industry and in academic, research and government institutions. It provides a thorough review of, and entry to, the primary and review literature surrounding the subject. The authors are internationally recognised experts in their field and combine to provide both commercial relevance and academic rigour. Contributions are based on papers delivered to the Fifth International Conference sponsored by the IEA Bioenergy Agreement.



Fundamentals of Thermochemical Biomass Conversion

Fundamentals of Thermochemical Biomass Conversion Author R.P. Overend
ISBN-10 9789400949324
Release 2012-12-06
Pages 1192
Download Link Click Here

Throughout the world many projects have been underway to investigate the conversion of renewable biomass into energy and synthetic fuels by thermo chemical methods such as combustion, pyrolysis, gasification and lique faction. While many of these represent prior art used during the early 20th century, the recent decade since the 1970s oil shock has immeasurably increased the knowledge base for such processes. Much of the new knowledge has been gained by persons who were not trained in classical wood chemistry and there have not yet been many attempts to synthesize the knowledge into a corpus of systematic information. To bring this about the International Energy Agency's Forestry Energy collaboration, the Gas Research Institute, the National Research Council of Canada and the US Department of Energy jointly sponsored a conference on the Fundamentals of Thermochemical Biomass Conversion in Estes Park, Colorado which was held on October 18-22, 1982. The Conference, which was structured around invited plenary papers and contributions from researchers, served as the basis for the papers in this volume which reflect the substantial conclusions of the Conference. During the planning for the Conference, it was realized by the editors in their capacity as Co-chairmen that a major problem in biomass research was the lack of reproducibility between reported experiments and their inter comparison on account of the heterogeneity of biomass materials. A well known wood chemist, George M.



Torrefaction of Biomass for Energy Applications

Torrefaction of Biomass for Energy Applications Author Leonel JR Nunes
ISBN-10 9780128096970
Release 2017-11-21
Pages 254
Download Link Click Here

Torrefaction of Biomass for Energy Applications: From Fundamentals to Industrial Scale explores the processes, technology, end-use, and economics involved in torrefaction at the industrial scale for heat and power generation. Its authors combine their industry experience with their academic expertise to provide a thorough overview of the topic. Starting at feedstock pretreatment, followed by torrefaction processes, the book includes plant design and operation, safety aspects, and case studies focusing on the needs and challenges of the industrial scale. Commercially available technologies are examined and compared, and their economical evaluation and life cycle assessment are covered as well. Attention is also given to non-woody feedstock, alternative applications, derived fuels, recent advances, and expected future developments. For its practical approach, this book is ideal for professionals in the biomass industry, including those in heat and power generation. It is also a useful reference for researchers and graduate students in the area of biomass and biofuels, and for decision makers, policy makers, and analysts in the energy field. Compares efficiency and performance of different commercially available technologies from the practical aspects of daily operation in an industrial scale plant Presents a cost analysis of the production, logistics, and storage of torrefied biomass Includes case studies addressing challenges that may occur in the daily operation in an industrial scale plant Covers other associated technologies, the densification of torrefied biomass, and non-woody feedstock



Coal and Biomass Gasification

Coal and Biomass Gasification Author Santanu De
ISBN-10 9789811073359
Release 2017-12-13
Pages 521
Download Link Click Here

This book addresses the science and technology of the gasification process and the production of electricity, synthetic fuels and other useful chemicals. Pursuing a holistic approach, it covers the fundamentals of gasification and its various applications. In addition to discussing recent advances and outlining future directions, it covers advanced topics such as underground coal gasification and chemical looping combustion, and describes the state-of-the-art experimental techniques, modeling and numerical simulations, environmentally friendly approaches, and technological challenges involved. Written in an easy-to-understand format with a comprehensive glossary and bibliography, the book offers an ideal reference guide to coal and biomass gasification for beginners, engineers and researchers involved in designing or operating gasification plants.



Proceedings of the First International Conference on Recent Advances in Bioenergy Research

Proceedings of the First International Conference on Recent Advances in Bioenergy Research Author Sachin Kumar
ISBN-10 9788132227731
Release 2016-04-25
Pages 358
Download Link Click Here

This contributed volume aims to provide latest updates in the area of bioenergy including biodiesel, bioethanol, biomethanation, biomass gasification, and biomass cook-stove. The proceedings of ICRABR 2015 include cutting edge research vital to R&D organizations, academics, and the industry to promote and document the recent developments in the area of bioenergy for all types of stakeholders. The volume highlights the needs of biofuels and their market, the barriers and challenges faced by biofuels and bioenergy and future strategies required to foster new ideas for research, collaboration and commercialization of bioenergy. The major themes of this contributed volume are: Biomass and Energy Management ;Thermochemical Conversion Processes; Biochemical Conversion Processes; Catalytic Conversion Processes; Electrochemical Processes; Waste Treatment to Harvest Energy; and Integrated Processes. The contents of the volume will appeal to students, researchers, professionals, and policymakers in the field of bifuels and bioenergy.



The Role of Green Chemistry in Biomass Processing and Conversion

The Role of Green Chemistry in Biomass Processing and Conversion Author Haibo Xie
ISBN-10 9781118449417
Release 2012-11-21
Pages 496
Download Link Click Here

Sets the stage for the development of sustainable, environmentally friendly fuels, chemicals, and materials Taking millions of years to form, fossil fuels are nonrenewable resources; it is estimated that they will be depleted by the end of this century. Moreover, the production and use of fossil fuels have resulted in considerable environmental harm. The generation of environmentally friendly energy from renewable sources such as biomass is therefore essential. This book focuses on the integration of green chemistry concepts into biomass processes and conversion in order to take full advantage of the potential of biomass to replace nonsustainable resources and meet global needs for fuel as well as other chemicals and materials. The Role of Green Chemistry in Biomass Processing and Conversion features contributions from leading experts from Asia, Europe, and North America. Focusing on lignocellulosic biomass, the most abundant biomass resource, the book begins with a general introduction to biomass and biorefineries and then provides an update on the latest advances in green chemistry that support biomass processing and conversion. Next, the authors describe current and emerging biomass processing and conversion techniques that use green chemistry technologies, including: Green solvents such as ionic liquids, supercritical CO2, and water Sustainable energy sources such as microwave irradiation and sonification Green catalytic technologies Advanced membrane separation technologies The last chapter of the book explores the ecotoxicological and environmental effects of converting and using fuels, chemicals, and materials from biomass. Recommended for professionals and students in chemical engineering, green chemistry, and energy and fuels, The Role of Green Chemistry in Biomass Processing and Conversion sets a strong foundation for the development of a competitive and sustainable bioeconomy. This monograph includes a Foreword by James Clark (University of York, UK).